Barriers and levers to enhance end-use functional properties of durum wheat grain: An agronomic implication.

Heliyon

Institute of Crop Sciences, Faculty of Agricultural, Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, H-4032, Debrecen, Hungary.

Published: May 2022

The current trends in population growth and consumption pattern remain to increase the demand for durum wheat grain. However, multiple biotic and abiotic challenges due to climate change coupled with crop management practices possess major concern to improve durum wheat production and storage proteins. Efforts on developing innovative agronomic and breeding strategies are essential to enhance productivity, and nutritional quality under the changing climate. Nitrogen is an important structural component of protein, and potentially reduce the adverse effect of drought stress through maintaining metabolic activities. Optimum nitrogen fertilization allows durum wheat producing farmers to attain high quality yield, brings economic benefit, and reduces environmental pollution. However, defining an optimum nitrogen fertilizer rate for specific location requires considering yield achievement and quality of the end products. If the producers interest is, geared towards production of high protein content, high nitrogen dose is required. If the interest gears towards grain yield improvement optimization of nitrogen fertilizer rate is important. This indicates that defining product-specific nitrogen application is required for sustainable durum wheat production. Therefore, future challenges of increasing production, productivity, and end-use functional properties of durum wheat will only be achieved through cooperation of multidisciplinary teams who are able to incorporate new technologies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9156948PMC
http://dx.doi.org/10.1016/j.heliyon.2022.e09542DOI Listing

Publication Analysis

Top Keywords

durum wheat
24
end-use functional
8
functional properties
8
properties durum
8
wheat grain
8
wheat production
8
optimum nitrogen
8
nitrogen fertilizer
8
fertilizer rate
8
durum
6

Similar Publications

Crop rotation effects on the population density of soybean soilborne pathogens under no-till cropping system.

Plant Dis

January 2025

USDA-ARS North Central Agricultural Research Laboratory, Brookings, South Dakota, United States;

Soilborne diseases are persistent problems in soybean production. Long-term crop rotation can contribute to soilborne disease management. However, the response of soilborne pathogens to crop rotation is inconsistent, and rotation efficacy is highly variable.

View Article and Find Full Text PDF

Wheat breeders are constantly looking for genes and alleles that increase grain yield. One key strategy is finding new genetic resources in the wild and domesticated gene pools of related species with genes affecting grain size. This study explored a natural population of Triticum turgidum (L.

View Article and Find Full Text PDF

Background: Incorporating organic manure improves soil properties and crop productivity. A long-term study started in October 1967 examined the effects of farmyard manure and nitrogen fertilization on the soil at key growth stages of pearl millet in a pearl millet-wheat cropping system over its 51st cycle.

Results: Applying 15 Mg of farmyard manure (FYM) per hectare in both growing seasons significantly boosted soil organic carbon (SOC), dissolved organic carbon (DOC), and key nutrients compared to one-season application.

View Article and Find Full Text PDF

Food safety is one of the primary demands of modern society. Mycotoxins are toxic metabolites of food-contaminating fungi. Fungi enter the food chain by infecting crops and irreversibly contaminate them due to the structural stability of mycotoxins.

View Article and Find Full Text PDF

Background: Innovation in crop establishment is crucial for wheat productivity in drought-prone climates. Seedling establishment, the first stage of crop productivity, relies heavily on root and coleoptile system architecture for effective soil water and nutrient acquisition, particularly in regions practicing deep planting. Root phenotyping methods that quickly determine coleoptile lengths are vital for breeding studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!