Two experiments were conducted to evaluate the inclusion rate roughage in wheat-based diets containing modified distillers grains with solubles (MDGS) on feedlot performance (Feedlot Experiment), as well as digestibility, ruminal pH, and ruminal fermentation characteristics (Digestibility Experiment). The feedlot experiment utilized 72 Angus steers (392 ± 46.3 kg initial body weight) which were randomly assigned to 1 of 12 pens, 3 pens per treatment, to evaluate feedlot performance and carcass characteristics. Dietary treatments were 1) control; 10% roughage, 2) 12% roughage, 3) 14% roughage, and 4) 16% roughage. The digestibility experiment used four ruminally and duodenally cannulated steers (393 ± 33.0 kg) in a 4 × 4 Latin Square with either 10%, 12%, 14%, or 16% roughage as in the feedlot experiment. However, dietary roughage source was different between these two experiments and included a combination of grass hay and wheat straw (Feedlot Experiment), and corn silage (Digestibility Experiment). All data were analyzed with the Mixed Procedures of SAS. Feed intake was recorded, with duodenal and fecal output calculated using chromic oxide. Ruminal pH and fermentation were assessed. Growth performance and most carcass characteristics were not affected by increasing roughage ( ≥ 0.11). Marbling tended to decrease linearly ( = 0.10) with increasing roughage inclusion. Increasing dietary roughage content had no effect on organic matter intake ( = 0.60) in the digestibility experiment. Intake, duodenal flow, and digestibility of neutral detergent fiber and acid detergent fiber were not affected by treatment ( ≥ 0.16). Ruminal pH increased linearly ( < 0.01) as rate of roughage inclusion increased. Ruminal concentrations of acetate and butyrate increased, and propionate decreased in a linear fashion ( < 0.01) thereby increasing ( < 0.01) acetate and butyrate to propionate ratio with increasing dietary roughage. Our data indicate that increasing roughage inclusion in wheat-based diets including 30% MDGS increased ruminal pH and shifted ruminal fermentation patterns. Additionally, increasing roughage inclusion did not affect feedlot performance in steers fed wheat at 36% to 42% of dietary dry matter in combination with 30% MDGS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9155159 | PMC |
http://dx.doi.org/10.1093/tas/txac051 | DOI Listing |
Molecules
January 2025
Department of Commodity and Food Analysis, The Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, 10-726 Olsztyn, Poland.
The aim of this study was to assess the effect of selected plant additives on changes in the content of fatty acids, lipid quality indicators and mineral composition of yogurts produced from cow's milk. The analysis included natural yogurts and yogurts enriched with 10% of chia seeds, hulled hemp seeds, quinoa seeds and oat bran. The fatty acid composition, the content of lipid quality indicators and the content of mineral components was varied in all analyzed yogurts.
View Article and Find Full Text PDFMicroorganisms
January 2025
Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
This study was developed with the goal of exploring the impact of capsaicin on ruminal fermentation and ruminal bacteria in beef cattle affected by high-grain diet-induced subacute ruminal acidosis (SARA). In total, 18 healthy Simmental crossbred cattle were randomized into three separate groups ( = 6/group): (1) control diet (CON; forage-to-concentrate ratio = 80:20); (2) high-grain diet (SARA; forage-to-concentrate ratio = 20:80); and (3) high-grain diet supplemented with capsaicin (CAP; 250 mg/cattle/day). The study was conducted over a 60-day period.
View Article and Find Full Text PDFAnimals (Basel)
January 2025
Department of Statistics, Kansas State University, Manhattan, KS 66061, USA.
Complex phytonutrients (CPS) have attracted extensive interest due to their anti-inflammatory effects. This investigation focused on the impact of CPS on rumen health in lambs on high-concentrate diets, emphasizing growth performance, ruminal fermentation, epithelial barrier integrity, ruminal metabolism, and microbial communities. A total of 54 lambs, 3 months old and with a 30.
View Article and Find Full Text PDFAnimals (Basel)
January 2025
College of Animal Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China.
This study evaluated the influences of coated folic acid (CFA) and folic acid (FA) on lactation performance, apparent digestibility, rumen volatile fatty acid (VFA) production, blood metabolism, and hepatic lipid content in cows. A total of 140 Holstein cows were allocated to seven groups in a randomized block design. Cows in the control received no addition, those in the in low CFA (LCFA), medium CFA (MCFA), and high CFA (HCFA) groups received CFA at 135, 270, and 405 mg FA/d, and those in the low FA (LFA), medium FA (MFA), and high FA (HFA) groups received FA at 135, 270, and 405 mg/d.
View Article and Find Full Text PDFMicrobiome
January 2025
Faculty of Science, Dookie Campus, The University of Melbourne, Melbourne, VIC, 3647, Australia.
Background: This research aimed to investigate differences in rumen fermentation characteristics between Karakul sheep and Hu sheep reared under identical conditions. The test subjects included newborn Hu and Karakul sheep, which were monitored across three stages: stage I (Weaning period: 15 ~ 30 days), stage II (Supplementary feeding period: 31 ~ 90 days), and stage III (Complete feeding period: 91 ~ 150 days). During the supplementary feeding period, cottonseed hulls were the main roughage source.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!