Demands for implantable bioelectronic devices to increase the number of channels for greater functional capacity and resolution, shrink implant size to minimize tissue response and patient burden, and support battery changes and electronics upgrades for long-term operational viability, cannot be met with existing implant-connector technology. In this paper we describe our novel approach to develop a rematable high-channel-density implant-connector technology, with a focus on the design, fabrication, and characterization of its microgasket. The microgaskets made of polydimethylsiloxane elastomer (PDMSe) have achieved much better electrical isolation for neural stimulation (~5 MΩ at 10 kHz) compared with conventional implant connectors (50 kΩ at 10 kHz), despite a 200-fold increase in channel density (conventional: ~0.0644 ch/mm, microgasket: ~12.8 ch/mm). The microgaskets also achieved high electrical isolation for neural recording (i.e., ~35 MΩ at 1 kHz) at the same high channel density. When mechanically compressed the microscale vias in the PDMSe microgaskets deform laterally, which could damage or enhance gasket-traversing conductive spring elements in each microscale via depending on their design. We have demonstrated that by lowering the height-to-width aspect ratio of the gasket vias, they can maintain their shape under clamping pressures high enough to achieve high isolation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9162095 | PMC |
http://dx.doi.org/10.1109/jmems.2022.3159487 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!