Cellulose-based composite scaffolds for bone tissue engineering and localized drug delivery.

Bioact Mater

Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada.

Published: February 2023

Natural bone constitutes a complex and organized structure of organic and inorganic components with limited ability to regenerate and restore injured tissues, especially in large bone defects. To improve the reconstruction of the damaged bones, tissue engineering has been introduced as a promising alternative approach to the conventional therapeutic methods including surgical interventions using allograft and autograft implants. Bioengineered composite scaffolds consisting of multifunctional biomaterials in combination with the cells and bioactive therapeutic agents have great promise for bone repair and regeneration. Cellulose and its derivatives are renewable and biodegradable natural polymers that have shown promising potential in bone tissue engineering applications. Cellulose-based scaffolds possess numerous advantages attributed to their excellent properties of non-toxicity, biocompatibility, biodegradability, availability through renewable resources, and the low cost of preparation and processing. Furthermore, cellulose and its derivatives have been extensively used for delivering growth factors and antibiotics directly to the site of the impaired bone tissue to promote tissue repair. This review focuses on the various classifications of cellulose-based composite scaffolds utilized in localized bone drug delivery systems and bone regeneration, including cellulose-organic composites, cellulose-inorganic composites, cellulose-organic/inorganic composites. We will also highlight the physicochemical, mechanical, and biological properties of the different cellulose-based scaffolds for bone tissue engineering applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9142858PMC
http://dx.doi.org/10.1016/j.bioactmat.2022.05.018DOI Listing

Publication Analysis

Top Keywords

bone tissue
16
tissue engineering
16
composite scaffolds
12
bone
9
cellulose-based composite
8
scaffolds bone
8
drug delivery
8
cellulose derivatives
8
engineering applications
8
cellulose-based scaffolds
8

Similar Publications

Scaffolds made from cartilage extracellular matrix are promising materials for articular cartilage repair, attributed to their intrinsic bioactivity that may promote chondrogenesis. While several cartilage matrix-based scaffolds have supported chondrogenesis and/or , it remains a challenge to balance the biological response (e.g.

View Article and Find Full Text PDF

Restoring bone healing potential.

Elife

January 2025

Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Queen Mary University of London, London, United Kingdom.

A combination of intermittent fasting and administering Wnt3a proteins to a bone injury can rejuvenate bone repair in aged mice.

View Article and Find Full Text PDF

Role of Trained Immunity in Heath and Disease.

Curr Cardiol Rep

January 2025

Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, 660 S Euclid Ave, Campus Box 8086, St. Louis, MO, 63110, USA.

Purpose Of Review: This review aims to explore the role of immune memory and trained immunity, focusing on how innate immune cells like monocytes, macrophages, and natural killer cells undergo long-term epigenetic and metabolic rewiring. Specifically, it examines the mechanisms by which trained immunity, often triggered by infection or vaccination, could impact cardiac processes and contribute to both protective and pathological responses within the cardiovascular system.

Recent Findings: Recent research demonstrates that vaccination and infection not only activate immune responses in circulating monocytes and tissue macrophages but also affect immune progenitor cells within the bone marrow environment, conferring lasting protection against heterologous infections.

View Article and Find Full Text PDF

Background: Regulatory T cells (Tregs) are essential for maintaining immune homeostasis and facilitating tissue regeneration by fostering an environment conducive to tissue repair. However, in damaged tissues, excessive inflammatory responses can overwhelm the immunomodulatory capacity of Tregs, compromising their functionality and potentially hindering effective regeneration. Mesenchymal stem cells (MSCs) play a key role in enhancing Treg function.

View Article and Find Full Text PDF

Objective: This systematic review and meta-analysis compares the efficacy and complication rate of absorbable versus non-absorbable 3D-printed, patient-customized, maxillofacial implants in facial trauma patients.

Data Sources: A comprehensive search of four databases (PubMed, Scopus, Web of Science, and Cochrane) was conducted.

Methods: A systematic review and single-proportion meta-analysis was conducted employing PRISMA guidelines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!