Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The proposed Edge-based Trust Management System (E-TMS) uses an Eigenvector-based approach for eliminating the security threats present in the Internet of Things (IoT) enabled smart city environment. In most existing trust management systems, the trust aggregation process completely depends on the direct trust ratings obtained from both legitimate and malicious neighboring IoT devices. E-TMS possesses an edge-assisted two-level trust computation approach for ensuring the malicious free trust evaluation of IoT devices. The E-TMS aims at removing the false contribution on aggregated trust data. It utilizes the properties of the Eigenvector for identifying compromised IoT devices. The Eigenvector Analysis also helps to avoid false detection. The analysis involves a comparison of all the contributed trust data about every single connected device. A spectral matrix will be generated corresponding to the contributions and the received trust will be scaled based on the obtained spectral values. The absolute sum of obtained values will contain only true contributions. The accurate identification of false data will remove the effect of malicious contributions from the final trust value of a connected IoT device. Since the final trust value calculated by the edge node contains only the trustworthy data, the prediction about the malicious nodes will be accurate. Eventually, the performance of E-TMS has been validated. Throughput and network resilience are higher than the existing system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9162873 | PMC |
http://dx.doi.org/10.1155/2022/5625897 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!