Background: Gold nanoparticles (AuNPs) are considered as promising agents to increase the radiosensitivity of tumor cells. However, the biological mechanisms of radiation enhancement effects of AuNPs are still not well understood. We present a multi-scale Monte Carlo simulation framework within TOPAS-nBio to investigate the increase of DNA damage due to the presence of AuNPs in mouse tumor models.

Methods: A tumor was placed inside a voxel mouse model and irradiated with either 100 kVp or 200 kVp x-ray beams. Phase spaces were employed to transfer particles from the macroscopic (voxel) scale to the microscopic scale, which consists of a cell geometry including a detailed mouse DNA model. Radiosensitizing effects were calculated in the presence and absence of hybrid nanoparticles with a Fe2O3 core surrounded by a gold layer (AuFeNPs). To simulate DNA damage even for very small energy tracks, Geant4-DNA physics and chemistry models were used on microscopic scale.

Results: An AuFeNP induced enhancement of both dose and DNA strand breaks has been established for different scenarios. Produced chemical radicals including hydroxyl molecules, which were assumed to be responsible for DNA damage through chemical reactions, were found to be significantly increased. We further observed a dependency of the results on the location of the cells within the tumor for 200 kVp x-ray beams.

Conclusions: Our multi-scale approach allows to study irradiation induced physical and chemical effects on cells. We showed a potential increase in cell radiosensitization caused by relatively small concentrations of AuFeNPs. Our new methodology allows the individual adjustment of parameters in each simulation step and therefore can be used for other studies investigating the radiosensitizing effects of AuFeNPs or AuNPs in living cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9165761PMC
http://dx.doi.org/10.1186/s12645-021-00099-3DOI Listing

Publication Analysis

Top Keywords

dna damage
12
multi-scale monte
8
monte carlo
8
mouse model
8
200 kvp
8
kvp x-ray
8
radiosensitizing effects
8
dna
6
carlo simulations
4
simulations gold
4

Similar Publications

Fucoidan has various physiological activities, and its structure is also different according to different brown algae. In this study SNF (Sargassum Naozhouense fucoidan) was extracted by acid extraction method, and its relative molecular weight was determined to be 631.40 kDa.

View Article and Find Full Text PDF

Radiation therapy is crucial for cancer treatment, but it often causes tissue damage. The kidney, which is sensitive to radiation, is under-researched in this context. This study aimed to develop a mouse model for radiation-induced acute kidney injury (AKI) using a small animal radiation research platform (SARRP) to mimic clinical radiation conditions.

View Article and Find Full Text PDF

ATM/ATR-Mediated DNA Damage Response Facilitates SARS-CoV-2 Spike Protein-Induced Syncytium Formation.

J Med Virol

January 2025

Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.

Multinucleated cells are present in lung tissues of patients infected by SARS-CoV-2. Although the spike protein can cause the fusion of infected cells and ACE2-expressing cells to form syncytia and induce damage, how host cell responses to this damage and the role of DNA damage response (DDR) signals in cell fusion are still unclear. Therefore, we investigated the effect of SARS-CoV-2 spike protein on the fusion of homologous and heterologous cells expressing ACE2 in vitro models, focusing on the protein levels of ATR and ATM, the major kinases responding to DNA damage, and their substrates CHK1 and CHK2.

View Article and Find Full Text PDF

Machine learning enhances genotoxicity assessment using MultiFlow® DNA damage assay.

Environ Mol Mutagen

December 2024

Research and Development, Preclinical Safety, Sanofi, Industriepark Hoechst, Frankfurt am Main, Germany.

Genotoxicity is a critical determinant for assessing the safety of pharmaceutical drugs, their metabolites, and impurities. Among genotoxicity tests, mechanistic assays such as the MultiFlow® DNA damage assay (MFA) allows the investigations on mode of action (MoA) of DNA damage through four mechanistic markers recorded at two time points. Previous studies have shown that machine learning (ML) can enhance precision on classifying the MoA of genotoxicants.

View Article and Find Full Text PDF

Background: Gastric cancer (GC) is a highly malignant gastrointestinal tumor characterized by difficult early diagnosis and poor prognosis. Therefore, it is imperative to explore potential therapeutic targets for gastric cancer. PARP9 is abnormally expressed in a variety of tumors and is associated with tumor cell apoptosis and DNA damage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!