Opioids, such as morphine, are used in clinical settings for the management of acute and chronic pain. However, long-term use of morphine leads to antinociceptive tolerance and hypersensitivity. The cellular and molecular mechanisms of morphine tolerance seem to be quite complex, with suggestions including internalization of the μ-opioid receptor (MOR), neuroinflammation with activation of microglia and astrocytes, and changes in synaptic function in the central nervous system. Yokukansan (YKS), a traditional Kampo medicine consisting of seven herbs, has been used to treat emotional instability, neurosis, and insomnia. Interestingly, recent studies have begun to reveal the inhibitory effect of YKS on the development of morphine tolerance. In the present study, we determined the effect of YKS on morphine tolerance formation and its mechanisms in a rat model, focusing on the synapses between primary sensory neurons and spinal dorsal horn secondary neurons. We found that morphine tolerance formation was significantly inhibited by YKS (0.3 or 1.0 g/kg/day) preadministration for 7 days. Repeated administration of morphine (10 mg/kg/day) increased the expression of presynaptic proteins, including synaptotagmin I, in the spinal cord, which was suppressed by YKS. Furthermore, these changes in presynaptic protein expression were more pronounced at isolectin B4 (IB4)-positive excitatory synapses around the lamina II of the dorsal horn. These results suggest that YKS suppresses the development of morphine tolerance by inhibiting the enhancement of presynaptic function of dorsal root ganglia neurons projecting to spinal dorsal horn neurons caused by continuous morphine administration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9157577PMC
http://dx.doi.org/10.3389/fphar.2022.862539DOI Listing

Publication Analysis

Top Keywords

morphine tolerance
24
development morphine
12
dorsal horn
12
morphine
10
presynaptic proteins
8
tolerance formation
8
spinal dorsal
8
tolerance
7
yks
6
neurons
5

Similar Publications

Chronic pain is a debilitating disease and remains challenging to treat. Morphine serves as the most commonly used drug for the treatment of pathological pain. However, detrimental side effects (e.

View Article and Find Full Text PDF

Decreased opioid receptor availability and impaired neurometabolic coupling as signatures of morphine tolerance in male rats: A positron emission tomography study.

Biomed Pharmacother

January 2025

Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Orsay, France. Electronic address:

Translational neuroimaging techniques are needed to address the impact of opioid tolerance on brain function and quantitatively monitor the impaired neuropharmacological response to opioids at the CNS level. A multiparametric PET study was conducted in rats. Rats received morphine daily to induce tolerance (15 mg/kg/day for 5 days), followed by 2-day withdrawal.

View Article and Find Full Text PDF

Tolerance to the antinociceptive effects of opioids is a major concern. Studies have shown that chronic use of non-steroidal anti-inflammatory (NSAIDs) causes significant tolerance and cross-tolerance to morphine. Chronic NSAIDs use can increase the risk of certain diseases, such as peptic ulcers, and exacerbate others, like heart failure.

View Article and Find Full Text PDF

C3/C3aR Bridges Spinal Astrocyte-Microglia Crosstalk and Accelerates Neuroinflammation in Morphine-Tolerant Rats.

CNS Neurosci Ther

January 2025

Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Aims: Communication within glial cells acts as a pivotal intermediary factor in modulating neuroimmune pathology. Meanwhile, an increasing awareness has emerged regarding the detrimental role of glial cells and neuroinflammation in morphine tolerance (MT). This study investigated the influence of crosstalk between astrocyte and microglia on the evolution of morphine tolerance.

View Article and Find Full Text PDF

The therapeutic benefits of opioids are compromised by the development of analgesic tolerance, which necessitates higher dosing for pain management thereby increasing the liability for drug dependence and addiction. Rodent models indicate opposing roles of the gut microbiota in tolerance: morphine-induced gut dysbiosis exacerbates tolerance, whereas probiotics ameliorate tolerance. Not all individuals develop tolerance, which could be influenced by differences in microbiota, and yet no study design has capitalized upon this natural variation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!