Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Posterior Capsule Opacification (PCO) is one of the most common complications of cataract surgery. While studies have shown that IOL material properties and fibronectin adsorption may affect IOL-induced PCO in the clinical setting, the mechanism governing such interactions is not totally understood. Since strong adhesion forces between IOLs and posterior capsules (PCs) have been shown to impede cell infiltration and thus reduce PCO formation, this study was designed to assess whether fibronectin adsorption and IOL material properties would impact the IOL:PC adhesion force and cell infiltration using a PCO predictive in vitro model and a macromolecular dye imaging model, respectively. Our results showed that fibronectin adsorption significantly increased the adhesion forces and reduced simulated cell infiltration between acrylic foldable IOLs and the PC at physiological temperature in comparison to fibronectin-free controls. This fibronectin-mediated strong IOL: PC bond may be contributing to low PCO rates in the clinic for acrylic foldable IOLs. In addition, acrylic foldable IOLs coated with Di(ethylene glycol) (Diglyme), a hydrophilic coating known to reduce protein adsorption, was tested for its ability to alter adhesion force and cell infiltration. We observed that IOLs coated with Diglyme coating greatly reduced surface hydrophobicity and fibronectin adsorption of acrylic foldable IOLs. Furthermore, Diglyme coated IOLs showed significantly reduced adhesion force and increased simulated cell infiltration at the IOL:PC interface. The overall results support the hypothesis that IOL surface properties and their ability to adsorb fibronectin may have great impact on the IOL:PC adhesion force. A tight binding between IOLs and PC may contribute to the reduction of cell infiltration and thus the PCO incidence rate in the clinic.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.exer.2022.109135 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!