Catalyst-free CO hydrogenation with BHNH in water: DFT mechanistic insights.

Phys Chem Chem Phys

Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany.

Published: June 2022

Extensive DFT calculations show that BHNH may transfer dihydrogen as separated hydride and proton to CO rather than HCO in water over a barrier of 25.9 kcal mol, followed by faster hydride transfer from borate anions to either electrophilic CO or protic HO or HCOH, leading to competitive formate production and H release.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2cp00590eDOI Listing

Publication Analysis

Top Keywords

catalyst-free hydrogenation
4
hydrogenation bhnh
4
bhnh water
4
water dft
4
dft mechanistic
4
mechanistic insights
4
insights extensive
4
extensive dft
4
dft calculations
4
calculations bhnh
4

Similar Publications

Catalyst-Free Nitrogen Fixation by Microdroplets through a Radical-Mediated Disproportionation Mechanism under Ambient Conditions.

J Am Chem Soc

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China.

Nitrogen fixation is essential for the sustainable development of both human society and the environment. Due to the chemical inertness of the N≡N bond, the traditional Haber-Bosch process operates under extreme conditions, making nitrogen fixation under ambient conditions highly desirable but challenging. In this study, we present an ultrasonic atomizing microdroplet method that achieves nitrogen fixation using water and air under ambient conditions in a rationally designed sealed device, without the need for any catalyst.

View Article and Find Full Text PDF
Article Synopsis
  • The catalytic triad of RNase A, consisting of His12, Lys41, and His119, is crucial for cleaving RNA bonds and creates a positively charged environment at physiological pH.
  • Docking studies identified a new class of RNase A inhibitors, 1,4,5-trisubstituted-carboxylated 1,2,3-triazoles, which were synthesized using pre-functionalized compounds under solvent and catalyst-free conditions.
  • The synthesized inhibitors showed competitive inhibition with varying efficacy, with the most effective being bisthioglycolic acid and bisoxyacetic acid derivatives, demonstrating significant hydrogen bonding with RNase A and providing insights into the structure-activity relationship.
View Article and Find Full Text PDF

We report a two-fold strategy to convert amides to amines in the presence of dimethylamine-borane as the hydrogen source. In the absence of any additive, the formation of the amines resulted from reduction of the amides. On the other hand, in the presence of TMEDA and dimethylamine-borane, tertiary amines were obtained from primary amides in a one-pot fashion.

View Article and Find Full Text PDF

The present work investigated the application of UVC combined with electrogenerated HO (UVC/e-HO) for BTA degradation using a Printex L6 carbon-based (PL6C) gas diffusion electrode (GDE). The studies were carried out by analyzing the influence of the current density, pH and initial BTA concentration in the contaminant degradation process. Under optimal conditions using 0.

View Article and Find Full Text PDF

We developed a molecular-oxygen-mediated multicomponent oxidative cyclization strategy to synthesize -heterocycles containing tertiary alcohol units via the formation of key C-OH bonds and quaternary carbon centers. This formal [3 + 2 + 1] annulation offers a green and sustainable alternative for the C-OH bond formation, using O as both the oxidant and oxygen source under metal- and catalyst-free conditions. Notably, continuous [1,5]-hydrogen transfer together with excess alcohols promotes the formation of C-OH-bearing products.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!