DUX4 is a transcription factor required during early embryonic development in placental mammals. In this work, we provide evidence that DUX4 is a co-repressor of nuclear receptors (NRs) of progesterone (PR) and glucocorticoids (GR). The DUX4 C-ter and N-ter regions, including the nuclear localization signals and homeodomain motifs, contribute to the co-repressor activity of DUX4 on PR and GR. Immunoprecipitation studies, using total protein extracts of cells expressing tagged versions of DUX4 and GR, support that these proteins are physically associated. Our studies suggest that DUX4 could modulate gene expression by co-regulating the activity of hormone NRs. This is the first report highlighting a potential endocrine role for DUX4.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/1873-3468.14416 | DOI Listing |
Biochim Biophys Acta Mol Basis Dis
December 2024
National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India. Electronic address:
Maintaining precise levels of FRG1 is vital. It's over-expression is tied to muscular dystrophy, while reduced levels are linked to tumorigenesis. Despite extensive efforts to characterize FRG1 expression and downstream molecular signaling, a comprehensive understanding of its regulation has remained elusive.
View Article and Find Full Text PDFSkelet Muscle
December 2024
Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO, USA.
Germline mutations in SMCHD1, DNMT3B and LRIF1 can cause facioscapulohumeral muscular dystrophy type 2 (FSHD2). FSHD is an epigenetic skeletal muscle disorder in which partial failure in heterochromatinization of the D4Z4 macrosatellite repeat causes spurious expression of the repeat-embedded gene in skeletal muscle, ultimately leading to muscle weakness and wasting. All three proteins play a role in chromatin organization and gene silencing; however, their functional relationship has not been fully elucidated.
View Article and Find Full Text PDFAntioxidants (Basel)
November 2024
Department of Biomedical Sciences for Health, University of Milan, Via Luigi Mangiagalli 31, 20133 Milan, Italy.
Facioscapulohumeral muscular dystrophy (FSHD) is caused by the epigenetic de-repression of the double homeobox 4 (DUX4) gene, leading to asymmetric muscle weakness and atrophy that begins in the facial and scapular muscles and progresses to the lower limbs. This incurable condition can severely impair muscle function, ultimately resulting in a loss of ambulation. A thorough analysis of molecular factors associated with the varying degrees of muscle impairment in FSHD is still lacking.
View Article and Find Full Text PDFDisabil Rehabil Assist Technol
November 2024
UCLA Orthopedic Surgery Research Center, Los Angeles, USA.
Background: Facioscapulohumeral Muscular Dystrophy (FSHD) is a genetically linked disorder characterized by the progressive deterioration of muscles controlling facial and scapular movement. The severity and distribution of affected muscle groups vary significantly across patient demographics, necessitating diverse assistive approaches.
Objective: This review aims to evaluate the effectiveness of assistive devices and therapeutic options, including medications and rehabilitative therapies, tailored to specific manifestations of FSHD.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!