AI Article Synopsis

  • Synthetic MRI is a quick imaging method that captures both detailed and contrast-weighted images, which can be challenging for young patients due to lengthy scan times.
  • A study evaluated three different synthetic MRI protocols in 33 children to see if changes in echo train length and receiver bandwidth could reduce scan times while maintaining image quality.
  • The findings revealed that adjusted protocols provided image quality comparable to standard protocols with significantly shorter scan times, indicating they are a feasible option for pediatric neuroimaging without compromising crucial diagnostic information.

Article Abstract

Background: Synthetic MRI is a time-efficient imaging technique that provides both quantitative MRI and contrast-weighted images simultaneously. However, a rather long single scan time can be challenging for children.

Objective: To evaluate the clinical feasibility of time-saving synthetic MRI protocols adjusted for echo train length and receiver bandwidth in pediatric neuroimaging based on image quality assessment and quantitative data analysis.

Materials And Methods: In total, we included 33 children ages 1.6-17.4 years who underwent synthetic MRI using three sets of echo train length and receiver bandwidth combinations (echo train length [E]12-bandwidth [B in KHz]22, E16-B22 and E16-B83) at 3 T. The image quality and lesion conspicuity of synthetic contrast-weighted images were compared between the suggested protocol (E12-B22) and adjusted protocols (E16-B22 and E16-B83). We also compared tissue values (T1, T2, proton-density values) and brain volumetry.

Results: For the E16-B83 combination, image quality was sufficient except for 15.2% of T1-W and 3% of T2-W fluid-attenuated inversion recovery (FLAIR) images, with remarkable scan time reduction (up to 35%). The E16-B22 combination demonstrated a comparable image quality to E12-B22 (P>0.05) with a scan time reduction of up to 8%. There were no significant differences in lesion conspicuity among the three protocols (P>0.05). Tissue value measurements and brain tissue volumes obtained with the E12-B22 protocol and adjusted protocols showed excellent agreement and strong correlations except for gray matter volume and non-white matter/gray matter/cerebrospinal fluid volume in E12-B22 vs. E16-B83.

Conclusion: The adjusted synthetic protocols produced image quality sufficient or comparable to that of the suggested protocol while maintaining lesion conspicuity with reduced scan time. The quantitative values were generally consistent with the suggested MRI-protocol-derived values, which supports the clinical application of adjusted protocols in pediatric neuroimaging.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00247-022-05389-5DOI Listing

Publication Analysis

Top Keywords

image quality
24
echo train
16
train length
16
scan time
16
pediatric neuroimaging
12
synthetic mri
12
lesion conspicuity
12
adjusted protocols
12
time-saving synthetic
8
protocols pediatric
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!