Comparative toxicity of silver nanoparticles and silver nitrate in freshwater fish Oreochromis mossambicus: A multi-biomarker approach.

Comp Biochem Physiol C Toxicol Pharmacol

Nano biosciences and Nanopharmacology Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Science Campus 6th Floor, Alagappa University, Karaikudi, 630004, Tamil Nadu, India. Electronic address:

Published: September 2022

Silver nanoparticles (AgNPs) in the aquatic environment affect ecological repercussions and have fatal impacts on aquatic animals. The current study examined and correlated the toxicity of silver nitrate (AgNO) and silver nanoparticles (AgNPs) to the Mozambique tilapia, Oreochromis mossambicus. The comparative toxicity studies were done by exposing O. mossambicus to various doses of AgNO and AgNPs (0, 25, 50, 75, and 100 μg/L) over a 7-day subacute exposure period. AAS analysis was used to detect Ag accumulation, while the histological examination established gill tissue damage. Oxidative stress affects lipid peroxidation (LPO) and protein carbonyl activity (PCA) in the gill tissue. Antioxidant parameters such as glutathione-S-transferase (GST), glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase activity (CAT), and non-enzymatic antioxidants such as metallothionein (MT) and reduced glutathione. The serum in the blood was used to determine non-specific immunological characteristics such as lysozyme (LYZ), myeloperoxidase (MPO), and respiratory burst activity (RBA). The neurotoxic impact of acetylcholine esterase activity (AChE) was investigated in brain tissues. The findings demonstrated that larger concentrations of AgNO than AgNPs improved enzymatic antioxidant activities in the gill tissue. Histological examination of fish gills demonstrated that both AgNPs and AgNO induced telangiectasia and epithelial cell hyperplasia. By increasing the concentration of AgNPs and AgNO, the present research demonstrated that silver accumulation leads to inefficient oxidative stress and altered enzymatic and non-enzymatic parameters, leading to cellular damage.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpc.2022.109391DOI Listing

Publication Analysis

Top Keywords

silver nanoparticles
12
gill tissue
12
comparative toxicity
8
toxicity silver
8
silver nitrate
8
oreochromis mossambicus
8
nanoparticles agnps
8
agno agnps
8
histological examination
8
oxidative stress
8

Similar Publications

Background: The increasing prevalence of antibiotic-resistant bacteria necessitates exploring nanotechnology as a potential solution for microbial elimination.

Objectives: This study aimed to investigate the antimicrobial and antioxidant effects of silver nanoparticles synthesized using aqueous extract from the Ephedra gerardiana (E. gerardiana) plant (EG@AgNPs).

View Article and Find Full Text PDF

The isolated Aspergillus flavus NSRN22 was used for green synthesis of silver and selenium nanoparticles (AgNPs and SeNPs). New food packaging films produced by combining each type of NPs with chitosan (CS) or sodium alginate (SA) were characterized. Transmission electron microscopy revealed that the average particle size was lower in case of AgNPs (9 to 14.

View Article and Find Full Text PDF

In an effort to meet the high demand for silver nanostructures in both research and consumer applications, we devise a simple and readily scaleable photochemical method through which silver nanostructures of varying morphologies, sizes, and optical properties can be synthesized using batch and flow photochemical strategies. For the latter we build upon the application of a wrapped-lamp photochemical flow system recently developed by our group to enable sequential irradiation with several wavelengths of LEDs in series in an approach that we describe as "plasmon pushing". We find that this strategy can accelerate the conversion of silver nanoparticle seeds to decahedral and triangular nanostructures, and that with it we have control over the tuning of the size and optical properties of triangular nanostructures in the red and near-IR regions.

View Article and Find Full Text PDF

Silver nanoparticles (AgNPs) are spherical particles with a number of specific and unique physical (such as surface plasmon resonance, high electrical conductivity and thermal stability) as well as chemical (including antimicrobial activity, catalytic efficiency and the ability to form conjugates with biomolecules) properties. These properties allow AgNPs to exhibit desired interactions with the biological system and make them prospective candidates for use in antibacterial and anticancer activities. AgNPs have a quenching capacity, which produces reactive oxygen species and disrupts cellular processes (such as reducing the function of the mitochondria, damaging the cell membrane, inhibiting DNA replication and altering protein synthesis).

View Article and Find Full Text PDF

Cytosine-rich and poly(adenine)-tailed tetrahedral DNA framework (TDF) is designed as template (A-TDF) for anchoring silver nanoclusters (AgNCs) and igniting the dual-color fluorescence of AgNCs. The resultant DNA-AgNCs simultaneously emits red and green fluorescence, and the quantum yield of red fluorescence is as high as 44.8%.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!