A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Coevolution of diagenetic fronts and fluid-fracture pathways. | LitMetric

Diagenetic boundaries are paleo-reaction fronts, which have the potential to archive the termination of metasomatic processes in sedimentary rocks. They have not been extensively studied, perhaps because they appear simple in outcrop. Recent work has demonstrated the significance of paleo-reaction fronts to decipher multiphase recrystallization processes and provide high porosity zones. This paper provides a detailed documentation of reaction front evolution in a tectonically active salt basin and reveals a high level of complexity, associated with multiple fluid flow and tectonic events. Here, consistent patterns of increasing dolomite stoichiometry and ordering, along with a change from seawater-derived, fabric-retentive dolomite to fracture-controlled, fabric-destructive hydrothermal dolomite are observed vertically across the stratabound dolomite bodies. These patterns, coupled with a decrease in porosity, increase in ∆ temperature and δO values indicate multiphase recrystallization and stabilization by warm, Mg-rich fluids. The stratabound dolomite bodies apparently terminated at a fracture-bound contact, but the presence of dolomite fragments within the fracture corridor suggests that fracturing post-dated the first dolomitization event. The termination of dolomite formation is therefore interpreted to be associated with a decrease in the capacity of the magnesium-rich fluids to dolomitize the rock, as indicated by the presence of non-stoichiometric and poorly ordered dolomite at the reaction fronts. The fracture corridors are interpreted to exploit dolostone-limestone boundaries, forming prior to a later, higher temperature, hydrothermal dolomitization event, which coincided with the formation and growth of the anticline. Karstification subsequently exploited these fracture corridors, widening fractures and leading to localized collapse and brecciation. The results demonstrate that an apparently simple reaction front can have a complex history, governed by the inheritance of prior diagenetic events. These events modified rock properties in such a way that fluid flow was repeatedly focused along the original dolomite-limestone boundary, overprinting much of its original signature. These findings have implications to the prediction of structurally controlled diagenetic processes and the exploration of naturally fractured carbonate reservoirs for energy exploration globally.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9166768PMC
http://dx.doi.org/10.1038/s41598-022-13186-1DOI Listing

Publication Analysis

Top Keywords

paleo-reaction fronts
8
multiphase recrystallization
8
reaction front
8
fluid flow
8
dolomite
8
stratabound dolomite
8
dolomite bodies
8
dolomitization event
8
fracture corridors
8
coevolution diagenetic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!