Hum Genome Var
Department of Pediatrics, Jichi Medical University, Tochigi, Japan.
Published: June 2022
TUBB4A gene variants cause dystonia type 4 and hypomyelination with atrophy of the basal ganglia and cerebellum. We report the case of a child with delayed motor development, intellectual disability, and dystonia. Magnetic resonance imaging revealed hypomyelination and progressive cerebellar atrophy without atrophy of the basal ganglia. Whole-exome sequencing revealed a de novo heterozygous variant, c.1088T > C, p.(Met363Thr), in TUBB4A. The present case further supports the vulnerability of the cerebellum in patients with TUBB4A pathogenic variants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9166743 | PMC |
http://dx.doi.org/10.1038/s41439-022-00198-6 | DOI Listing |
J Prev Alzheimers Dis
February 2025
Department of Psychosomatic Medicine, University Medicine Rostock, Rostock, Germany; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Greifswald, Rostock, Germany.
Background: Imaging studies showed early atrophy of the cholinergic basal forebrain in prodromal sporadic Alzheimer's disease and reduced posterior basal forebrain functional connectivity in amyloid positive individuals with subjective cognitive decline. Similar investigations in familial cases of Alzheimer's disease are still lacking.
Objectives: To test whether presenilin-1 E280A mutation carriers have reduced basal forebrain functional connectivity and whether this is linked to amyloid pathology.
Medicina (Kaunas)
January 2025
Institute of Public Health, Riga Stradins University, LV-1007 Riga, Latvia.
Cognitive impairment affects memory, reasoning, and problem-solving, with early detection being critical for effective management. The amygdala, a key structure in emotional processing and memory, may play a pivotal role in detecting cognitive decline. This study examines differences in amygdala nuclei volumes in patients with varying levels of cognitive performance to evaluate its potential as a biomarker.
View Article and Find Full Text PDFAJNR Am J Neuroradiol
January 2025
From the Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China.
Background And Purpose: Differentiating Parkinson's Disease (PD) from Atypical Parkinsonism Syndrome (APS), including Multiple System Atrophy (MSA) and Progressive Supranuclear Palsy (PSP), is challenging, and there is no gold standard. Integrating quantitative susceptibility mapping (QSM) and morphometry can help differentiate PD from APS and improve the internal diagnosis of APS.
Materials And Methods: In this retrospective study, we enrolled 55 patients with PD, 17 with MSA-parkinsonian type (MSA-P), 15 with MSA-cerebellar type (MSA-C), and 14 with PSP.
Ann Neurol
January 2025
Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, People's Republic of China.
Objective: The objective of this study was to delineate synaptic density alterations in multiple system atrophy (MSA) and explore its potential role as a biomarker for MSA diagnosis and disease severity monitoring using [F]SynVesT-1 positron emission tomography / computed tomography (PET CT).
Methods: In this prospective study, 60 patients with MSA (30 patients with MSA-parkinsonian [MSA-P] subtype and 30 patients with MSA-cerebellar [MSA-C] subtype), 30 patients with Parkinson's disease (PD), and 30 age-matched healthy controls (HCs) underwent [F]SynVesT-1 PET/CT for synaptic density assessment. Visual, voxel, and volumetric region of interest (VOI) analyses were used to elucidate synaptic density patterns in the MSA brain and establish diagnostic criteria.
J Neurol
January 2025
Centre de Génétique Humaine, Centre Hospitalier Universitaire de Besançon, Besançon, France.
Introduction: The MAPT gene encodes Tau, a protein mainly expressed by neurons. Tau protein plays an important role in cerebral microtubule polymerization and stabilization, in axonal transport and synaptic plasticity. Heterozygous pathogenic variation in MAPT are involved in a spectrum of autosomal dominant neurodegenerative diseases known as taupathies, including Alzheimer's disease, Pick's disease, fronto-temporal dementia, cortico-basal degeneration and progressive supranuclear palsy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.