Mallow blue (Malva sylvestris L.), hibiscus (Hibiscus rosa-sinensis L.) and nasturtium (Tropaeolum majus L.), are common edible flowers rich in bioactive secondary metabolites (BASMs) whose use in sophisticated gastronomy present currently as increasing trend. In this study the BASMs profile of these edible flowers was established using an emerging green extraction technique, μQuEChERS followed by ultra-high performance liquid chromatography coupled to a photodiode array detection system (UHPLC-PDA). After validation the μQuEChERS/UHPLC-PDA methodology allow to identify that apigenin and epigallocatechin gallate are the most abundant BASMs in mallow blue flowers, while catechin and dicaffeoylquinic acid are predominant in hibiscus flowers, and myricitrin and dicaffeoylquinic acid in nasturtium flowers. Total polyphenol content is the highest in the extract of hibiscus. Nasturtium shows the greatest radical scavenging activity. The results revealed that these flowers constitute a potential source of BASMs with different bioactive properties suggesting its use in design of new functional foods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2022.133371 | DOI Listing |
J Adv Res
January 2025
State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao 999078, China; Guangdong-Hong Kong-Macau Join Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, University of Macau, Avenida da Universidade, Taipa, Macao 999078, China; Department of Pharmaceutical Sciences and Technology, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macao 999078, China. Electronic address:
Introduction: Non-alcoholic fatty liver disease (NAFLD) acts as the primary contributor to non-alcoholic steatohepatitis, fibrosis, cirrhosis, and potentially hepatocellular carcinoma. The flowers of Chrysanthemum indicum, a traditional edible medicinal herb, have been widely used in China for more than 2000 years. However, the function of C.
View Article and Find Full Text PDFCannabis
December 2024
Peter Boris Centre for Addictions Research, St. Joseph's Healthcare Hamilton and McMaster University.
Unlabelled: Although Canada legalized cannabis beverages in 2019, most available research on acute cannabis intoxication derives from dried flower and edible products. The distinct bioavailability and pharmacokinetic properties of phytocannabinoids ingested from beverages, however, contribute to significantly different acute and long-term effects that need to be better understood to ensure consumer safety.
Objective: This review investigates existing cannabis beverage literature, with a particular focus on acute intoxication effects.
Antioxidants (Basel)
November 2024
Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano, 49, 80131 Naples, Italy.
Although edible flowers have been historically principally used due to their visual appeal and smell, the world is discovering their value as innovative and natural sources of bioactive compounds. L. (CpL), a plant from the Cucurbitaceae family, is widely cultivated for its edible fruits and flowers, which are rich in polyphenols and carotenoids-compounds known for their potent antioxidant and anti-inflammatory properties.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
College of Horticulture, South China Agricultural University, Guangzhou 510642, China. Electronic address:
Plant Physiol
January 2025
Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China.
Trichomes play a crucial role in plant resistance to abiotic and biotic stresses, and their development and characteristics vary across different species. This study demonstrates that trichomes of Lilium pumilum exhibit synchronized growth during flower bud differentiation and enhance the plant's adaptability to UV-B radiation and aphid infection. We identified LpNAC48, a NAC family transcription factor (TF), that interacted with the B-box (BBX) family TF LpBBX28, during trichome formation in L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!