A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Oxygen availability driven trends in DOM molecular composition and reactivity in a seasonally stratified fjord. | LitMetric

Oxygen availability driven trends in DOM molecular composition and reactivity in a seasonally stratified fjord.

Water Res

Joint Laboratory for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Halifax, Canada, Qingdao, China and Xiamen, China; State Key Laboratory for Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.

Published: July 2022

Ocean deoxygenation could potentially trigger substantial changes in the composition and reactivity of dissolved organic matter (DOM) pool, which plays an important role in the global carbon cycle. To evaluate links between DOM dynamics and oxygen availability, we investigated the DOM composition under varying levels of oxygen in a seasonally hypoxic fjord through a monthly time-series over two years. We used ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) to characterize DOM on a molecular level. We find a clear trend both in diversity and molecular composition of the DOM along the oxygen gradient. As oxygen decreased, the chemodiversity was significantly increased, along with accumulation of relatively high-molecular-weight, reduced and unsaturated compounds enriched with carboxyl-group structures, which were also thermodynamically less favorable to biodegradation. Our results suggested that oxygen depletion selectively protected otherwise bioavailable compounds from decomposition and may promote the accumulation of a larger recalcitrant DOM pool in the global ocean, which could provide negative feedback to the ocean carbon sequestration and climate change.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2022.118690DOI Listing

Publication Analysis

Top Keywords

oxygen availability
8
dom molecular
8
molecular composition
8
composition reactivity
8
dom pool
8
dom
7
oxygen
6
availability driven
4
driven trends
4
trends dom
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!