As a medicinal herbal plant, Entada phaseoloides has high levels of secondary metabolites, particularly triterpenoid saponins, which are important resources for scientific research and medical applications. However, the lack of a reference genome for this genus has limited research on its evolution and utilization of its medicinal potential. In this study, we report a chromosome-scale genome assembly for E. phaseoloides using Illumina, Nanopore long reads and high-throughput chromosome conformation capture technology. The assembled reference genome is 456.18 Mb (scaffold N50 = 30.9 Mb; contig N50 = 6.34 Mb) with 95.71% of the sequences anchored onto 14 pseudochromosomes. E. phaseoloides was estimated to have diverged from the Leguminosae lineage at ~72.0 million years ago. With the integration of transcriptomic and metabolomic data, gene expression patterns and metabolite profiling of E. phaseoloides were determined in different tissues. The pattern of gene expression and metabolic profile of the kernel were distinct from those of other tissues. Furthermore, the evolution of certain gene families involved in the biosynthesis of triterpenoid saponins and terpenes was analysed and offers new insights into the formation of these two metabolites. Four CYP genes, one UGT gene and related transcription factors were identified as candidate genes contributing to regulation of triterpenoid saponin biosynthesis. As the first high-quality assembled reference genome in the genus Entada, it will not only provide new information for the evolutionary study of this genus and conservation biology of E. phaseoloides but also lay a foundation for the formation and utilization of secondary metabolites in medicinal plants.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1755-0998.13662DOI Listing

Publication Analysis

Top Keywords

triterpenoid saponins
12
reference genome
12
entada phaseoloides
8
biosynthesis triterpenoid
8
secondary metabolites
8
genome genus
8
assembled reference
8
gene expression
8
phaseoloides
6
genome
5

Similar Publications

Context: The decline in ovarian reserve is a major concern in female reproductive health, often associated with oxidative stress and mitochondrial dysfunction. Although ginsenoside Rg1 is known to modulate mitophagy, its effectiveness in mitigating ovarian reserve decline remains unclear.

Objective: To investigate the role of ginsenoside Rg1 in promoting mitophagy to preserve ovarian reserve.

View Article and Find Full Text PDF

Over-accumulation of reactive oxygen species (ROS) causes hepatocyte dysfunction and apoptosis that might lead to the progression of liver damage. Sirtuin-3 (SIRT3), the main NAD+-dependent deacetylase located in mitochondria, has a critical role in regulation of mitochondrial function and ROS production as well as in the mitochondrial antioxidant mechanism. This study explores the roles of astragaloside IV (AST-IV) and formononetin (FMR) in connection with SIRT3 for potential antioxidative effects.

View Article and Find Full Text PDF

Enhancement of Doxorubicin Efficacy by Bacopaside II in Triple-Negative Breast Cancer Cells.

Biomolecules

January 2025

Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville South, Adelaide, SA 5011, Australia.

Background: Triple-negative breast cancer (TNBC) is an aggressive subtype with limited treatment options and high resistance to chemotherapy. Doxorubicin is commonly used, but its efficacy is limited by variable sensitivity and resistance. Bacopaside II, a saponin compound, has shown anti-cancer potential.

View Article and Find Full Text PDF

Two previously undescribed triterpenoid saponins from the roots and rhizomes of Maxim.

Front Chem

January 2025

Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, The Air Force Medical University, Xi'an, China.

Since ancient times, plants have provided humans with important bioactive compounds for the treatment of various diseases. Nine compounds were isolated from the roots and rhizomes of Caulophyllum robustum (a plant in the family Panaxaceae), including two new saponins C. Spanion A and C.

View Article and Find Full Text PDF

Background: Mitochondrial dysfunction plays a crucial role in the development of a variety of diseases, notably neurodegenerative disorders, cardiovascular diseases, metabolic syndrome, and cancer. Natural saponins, which are intricate glycosides characterized by steroidal or triterpenoid structures, have attracted interest due to their diverse pharmacological benefits, including anti-inflammatory, antiviral, and anti-aging effects.

Purpose: This review synthesizes recent advancements in understanding mitochondrial dysfunction and explores how saponins can modulate mitochondrial function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!