Expert proposal to characterize cardiac diseases with normal or preserved left ventricular ejection fraction and symptoms of heart failure by comprehensive echocardiography.

Clin Res Cardiol

Zentrale Notaufnahme and Klinik Für Innere Medizin III, Kardiologie, Angiologie Und Internistische Intensivmedizin, Universitätsklinikum Des Saarlandes, Kirrberger Strasse, 66421, Homburg, Germany.

Published: January 2023

Currently, the term "heart failure with preserved left ventricular ejection fraction (HFpEF)" is based on echocardiographic parameters and clinical symptoms combined with elevated or normal levels of natriuretic peptides. Thus, "HFpEF" as a diagnosis subsumes multiple pathophysiological entities making a uniform management plan for "HFpEF" impossible. Therefore, a more specific characterization of the underlying cardiac pathologies in patients with preserved ejection fraction and symptoms of heart failure is mandatory. The present proposal seeks to offer practical support by a standardized echocardiographic workflow to characterize specific diagnostic entities associated with "HFpEF". It focuses on morphological and functional cardiac phenotypes characterized by echocardiography in patients with normal or preserved left ventricular ejection fraction (LVEF). The proposal discusses methodological issues to clarify why and when echocardiography is helpful to improve the diagnosis. Thus, the proposal addresses a systematic echocardiographic approach using a feasible algorithm with weighting criteria for interpretation of echocardiographic parameters related to patients with preserved ejection fraction and symptoms of heart failure. The authors consciously do not use the diagnosis "HFpEF" to avoid misunderstandings. Central illustration: Scheme illustrating the characteristic echocardiographic phenotypes and their combinations in patients with "HFpEF" symptoms with respect to the respective cardiac pathology and pathophysiology as well as the underlying typical disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9849322PMC
http://dx.doi.org/10.1007/s00392-022-02041-yDOI Listing

Publication Analysis

Top Keywords

ejection fraction
20
preserved left
12
left ventricular
12
ventricular ejection
12
fraction symptoms
12
symptoms heart
12
heart failure
12
normal preserved
8
echocardiographic parameters
8
patients preserved
8

Similar Publications

Introduction: Chronic ischemic heart failure is a major global health issue despite advancements in therapy. Stem cell (SC) therapy has emerged as a potential treatment, but its effectiveness remains uncertain. This study aimed to systematically review and meta-analyze the current evidence on SC therapy's efficacy.

View Article and Find Full Text PDF

Implantable hemodynamic devices like the CardioMEMS HF System are commonly used to manage fluid status in patients with heart failure (HF) by measuring pulmonary pressures. Although CardioMEMS has been shown to reduce HF hospitalizations, rare complications (eg, device endothelialization) can occur and warrant clinical attention. A 67-year-old woman with HF with preserved ejection fraction and group 2 pulmonary hypertension experienced recurrent HF exacerbations.

View Article and Find Full Text PDF

Myocardial fibrosis leads to cardiac dysfunction and arrhythmias in heart failure with preserved ejection fraction (HFpEF), but the underlying mechanisms remain poorly understood. Here, RNA sequencing identifies Forkhead Box1 (FoxO1) signaling as abnormal in male HFpEF hearts. Genetic suppression of FoxO1 alters the intercellular communication between cardiomyocytes and fibroblasts, alleviates abnormal diastolic relaxation, and reduces arrhythmias.

View Article and Find Full Text PDF

Research in aging often refers to animal models, particularly C57BL/6J (B6J) mice, considered gold standard. However, B6J mice are distributed by different suppliers, which results in divers substrains exhibiting notable phenotypic differences. To ensure a suitable phenotype of cardiac aging, we performed heart analyses of young (5 months) and old B6J mice (24 months) from two substrains: B6JRj (Janvier) and B6JCrl mice (Charles River).

View Article and Find Full Text PDF

Heart failure (HF) is a conundrum in that, current therapies only slow the progression of the disease. We posit, if the causal mechanism were targeted, progression of the disease could be stopped and potentially reversed. We hypothesize that insufficient myocardial blood flow (MBF) produces minute areas of ischemia, that lead to an accumulating injury culminating in HF.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!