C-scheme electron transfer mechanism: An efficient ternary heterojunction photocatalyst carbon quantum dots/Bi/BiOBr with full ohmic contact.

J Colloid Interface Sci

Eco-Materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, PR China. Electronic address:

Published: October 2022

With a facile one-pot solvothermal method, an efficient ternary heterojunction photocatalyst carbon quantum dots (CQDs)/Bi/BiOBr is firstly prepared. Ethylene glycol (EG) is used as the solvent and carbon source for the first time. At 190 °C for 3 h, while BiOBr is synthesized, EG is employed to prepare CQDs through bottom-up method. CQDs are grafted by a large number of functional groups with reducibility, which reduce some neighboring BiO to metal Bi. By modifying the solvothermal temperature and time, CQDs and Bi are in-situ controllably deposited on the surface of BiOBr microspheres. Due to different Fermi levels and work functions, the interfaces of CQDs, BiOBr and Bi are connected through ohmic junctions with low contact impedance. The hot electrons from Bi with surface plasmon resonance (SPR) properties, and electrons in the CB of BiOBr flow to CQDs, forming a C-scheme electron transfer mechanism. O from CQDs and h in the VB of BiOBr respectively attack the sites with higher and lower electron density in methyl orange (MO) molecule, resulting in its photodegradation into small molecular products.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2022.05.091DOI Listing

Publication Analysis

Top Keywords

c-scheme electron
8
electron transfer
8
transfer mechanism
8
efficient ternary
8
ternary heterojunction
8
heterojunction photocatalyst
8
photocatalyst carbon
8
carbon quantum
8
cqds biobr
8
cqds
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!