Abnormal expression of p120 catenin is associated with the malignant phenotype in human lung cancer. Numerous studies have focused on the function of p120 catenin in the juxta-membrane compartment. However, the role of nuclear p120 catenin remains unclear. In this study, the dynamic changes in nuclear p120 catenin localization during cell cycle progression were investigated. Immunofluorescent staining, FACS analysis, and western blotting revealed that nuclear p120 catenin is a major architectural constituent of the chromosome periphery during mitosis. During mitosis, granule-like p120 catenin dispersed into a cloudy-like structure and formed cordon-like structures surrounding the condensed chromosomes to create the peri-chromosomal layer. Interestingly, lumican and p120 catenin colocalized at the spindle fiber where the perichromosomal layer connects to the condensed chromosomes during mitosis. Furthermore, downregulation of p120 catenin using a specific siRNA induced cell cycle stalling in the G2/M phase and promoted aneuploidy. This study validates the role of nuclear p120 catenin in the formation of the chromosome periphery and reveals the p120 catenin-lumican interaction may couple orientation of cell division with the segregation of sister chromatids during mitosis. Our data suggest the protective role of p120 catenin in maintaining the integrity of chromosomes, and also warrants further studies to evaluate the contribution of the loss of p120 catenin to the creation of gene rearrangement in cancer evolution and tumor progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9167299PMC
http://dx.doi.org/10.1038/s41419-022-04929-zDOI Listing

Publication Analysis

Top Keywords

p120 catenin
48
nuclear p120
20
catenin
12
p120
12
perichromosomal layer
8
lung cancer
8
role nuclear
8
cell cycle
8
chromosome periphery
8
condensed chromosomes
8

Similar Publications

Our study aimed to investigate the relationship between δ-catenin expression and whole-brain small-world network in breast cancer patients before chemotherapy using rs-fMRI. The study was based on the hypothesis that different δ-catenin expression levels correspond to distinct brain imaging characteristics. A total of 105 pathologically confirmed breast cancer patients were collected and categorized into high δ-catenin expression (DH, 52 cases) and low expression (DL, 53 cases) groups.

View Article and Find Full Text PDF

The long non-coding RNA Growth Arrest-Specific 5 (GAS5) is pivotal in modulating key signaling pathways by functioning as a molecular sponge for microRNAs (miRNAs). GAS5 is notably recognized for its antitumor properties, primarily through its ability to sequester oncogenic miRNAs, thereby influencing critical pathways such as p53, Wnt/β-catenin, and PI3K/Akt, all of which are integral to cell proliferation, apoptosis, and metastasis. The disruption of GAS5-miRNA interactions has been implicated in various malignancies, reinforcing its potential as both a biomarker and a therapeutic target.

View Article and Find Full Text PDF

TTK Inhibition Alleviates Postinjury Neointimal Formation and Atherosclerosis.

Adv Sci (Weinh)

December 2024

Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.

Atherosclerosis and its associated cardio-cerebrovascular complications remain the leading causes of mortality worldwide. Current lipid-lowering therapies reduce only approximately one-third of the cardiovascular risk. Furthermore, vascular restenosis and thrombotic events following surgical interventions for severe vascular stenosis significantly contribute to treatment failure.

View Article and Find Full Text PDF

Background: The catenin delta 2 () gene has been implicated in the progression of various cancers, but its specific role in melanoma has not yet been thoroughly investigated. This study sought to explore the expression and biological function of in malignant melanoma tissues to identify new targets or biomarkers for melanoma diagnosis and treatment.

Methods: Immunohistochemistry was used to examine the levels of in melanoma and adjacent non-tumor tissues.

View Article and Find Full Text PDF

Multiple myeloma (MM) is a cancer of plasma cells caused by abnormal gene expression and interactions within the bone marrow (BM) niche. The BM environment significantly influences the progression of MM. Celastrol, a natural compound derived from traditional Chinese medicine, exhibits significant anticancer effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!