Comparison of fitness effects in the earthworm Eisenia fetida after exposure to single or multiple anthropogenic pollutants.

Sci Total Environ

Animal Population Ecology, Animal Ecology I, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany.

Published: September 2022

Terrestrial ecosystems are exposed to many anthropogenic pollutants. Non-target effects of pesticides and fertilizers have put agricultural intensification in the focus as a driver for biodiversity loss. However, other pollutants, such as heavy metals, particulate matter, or microplastic also enter the environment, e.g. via traffic and industrial activities in urban areas. As soil acts as a potential sink for such pollutants, soil invertebrates like earthworms may be particularly affected by them. Under natural conditions soil invertebrates will likely be exposed to combinations of pollutants simultaneously, which may result in stronger negative effects if pollutants act synergistically. Within this work we study how multiple pollutants affect the soil-dwelling, substrate feeding earthworm Eisenia fetida. We compared the effects of the single stressors, polystyrene microplastic fragments, polystyrene fibers, brake dust and carbon black, with the combined effect of these pollutants when applied as a mixture. Endpoints measured were survival, increase in body weight, reproductive fitness, and changes in three oxidative stress markers (glutathione S-transferase, catalase and malondialdehyde). We found that among single pollutant treatments, brake dust imposed the strongest negative effects on earthworms in all measured endpoints including increased mortality rates. Sub-lethal effects were found for all pollutants. Exposing earthworms to all four pollutants simultaneously led to effects on mortality and oxidative stress markers that were smaller than expected by the respective null models. These antagonistic effects are likely a result of the adsorption of toxic substances found in brake dust to the other pollutants. With this study we show that effects of combinations of pollutants cannot necessarily be predicted from their individual effects and that combined effects will likely depend on identity and concentration of the pollutants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.156387DOI Listing

Publication Analysis

Top Keywords

pollutants
13
brake dust
12
effects
11
earthworm eisenia
8
eisenia fetida
8
anthropogenic pollutants
8
soil invertebrates
8
combinations pollutants
8
pollutants simultaneously
8
negative effects
8

Similar Publications

Imidazole Cationic-Bridged Pillar[5]arene Polymer as a Recycle Adsorbent for Iodine Capture.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Intelligent Supramolecular Chemistry at the University of Yunnan Province, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650500, P. R. China.

Developing efficient and recyclable iodine adsorbents is crucial for addressing radioactive iodine pollution. An imidazole cation-bridged pillar[5]arene polymer (P5-P5I) was synthesized via a salt formation reaction. P5-P5I exhibited a high iodine vapor capture capacity of 2130.

View Article and Find Full Text PDF

This paper developed an efficient microbial activator formula and conducted an in-depth study on its efficacy and mechanism in promoting the degradation of petroleum hydrocarbons in oil-contaminated soil. A 60-day microbial remediation experiment conducted on oily soil revealed that the microbial activators significantly boosted the activities of dehydrogenase and catalase, subsequently speeding up the degradation of petroleum hydrocarbons in the soil. The overall degradation rate reached as high as 71.

View Article and Find Full Text PDF

This study investigates the spatio-temporal distribution of formaldehyde (HCHO) over the mainland Southeast Asian region (including Northeast India) from 2019 to 2022 using TROPOMI satellite data. HCHO is a key atmospheric trace gas which is influenced by both natural processes and anthropogenic activities. We analyze HCHO levels in relation to atmospheric species including carbon monoxide (CO), nitrogen dioxide (NO), and environmental factors such as land surface temperature (LST), precipitation (PPT), fire radiative power (FRP), and enhanced vegetation index (EVI).

View Article and Find Full Text PDF

Sexual mosaics in Simuliidae members have been detected at low frequencies in various locations worldwide. These phenotypic expressions are expected in very small amounts in any natural insect population and may result from inherent individual formation factors, such as hormonal or external elements, i.e.

View Article and Find Full Text PDF

Anthropogenic activities such as industrial pollution of water bodies possess threat to floras leading to extinction and endangerment. This study investigates the impact of industrial pollution on vegetation along River Chenab and its associated drains. Rivers and channels transporting industrial effluents have been determined to be significantly contaminated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!