Blue carbon ecosystems (BCEs) are a promising resource for the mitigation of global warming; however, climate spectrums and anthropogenic activities could influence the fragile balance of BCEs as carbon sinks or sources. We assess how oyster farming affects dissolved inorganic carbon (DIC) and total alkalinity (TA) on CO fluxes in a mangrove-dominated lagoon. Water physical, chemical and biological parameters were recorded by in-situ buoys within the lagoon and at its inflow. Structural equation modeling was adopted to clarify the factors/processes controlling the partial pressure of CO (pCO). A three-dimensional environmental model followed by a conceptual DIC model was used to quantify the spatiotemporal patterns of capture and release of DIC and TA by oyster production. The results showed that 49% of TA and DIC released from mangroves was depleted by oyster shell formation. DIC was reduced by algal photosynthesis and algal was served as a food source supporting oyster production. Annual oyster production through phytoplankton photosynthesis accounted for 11% of the atmosphere carbon inflows, suggesting that oyster production served as a significant atmospheric/terrestrial carbon sink in the lagoon. The results indicate that mangroves benefit local oyster production by acting as an important source of DIC and TA, and that the oyster aquaculture contributed to carbon capture in a mangrove-dominated lagoon ecosystem.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.156460 | DOI Listing |
Mar Biotechnol (NY)
January 2025
Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
The influence of sex and heredity on DNA methylation in the somatic tissues of mice has been well-documented, with similar hereditary effects reported in honeybees. However, the extent to which these factors affect DNA methylation in molluscan somatic tissues remains poorly understood. In this study, we investigated genomic DNA methylation patterns in the adductor muscle of two genetically distinct oyster strains using whole-genome bisulfite sequencing (WGBS).
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2024
Experimental Research Center, China Academy of Chinese Medical Sciences Beijing 100700, China.
Calcined oyster is a commonly used shellfish traditional Chinese medicine in clinical practice in China. During the processing of oysters, their microscopic characteristics are destroyed, and open-fire calcination can damage the DNA of oysters, making it difficult to identify the primary source. The establishment of a specific polymerase chain reaction(PCR) method for the identification of calcined oysters can provide a guarantee for the safety and clinical efficacy of the medicine and its processed products.
View Article and Find Full Text PDFGenomics
January 2025
School of Biological Science and Technology, Liupanshui Normal University, Liupanshui 553004, China. Electronic address:
Cultivation of edible mushrooms on straw can significantly reduce production costs, provide notable environmental and ecological benefits. However, the molecular mechanisms via which mushrooms utilize straw are not well understood. We conducted a comparative transcriptomic analysis of oyster mushrooms cultivated on two different biomass substrates, namely, corncob and tobacco straw at various developmental stages.
View Article and Find Full Text PDFSci Total Environ
January 2025
IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France. Electronic address:
Pacific oysters face recurring outbreaks of Pacific Oyster Mortality Syndrome (POMS), a polymicrobial multifactorial disease. Although this interaction is increasingly understood, the role of epigenetics (e.g.
View Article and Find Full Text PDFFood Environ Virol
January 2025
Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB, Wageningen, the Netherlands.
Viral contamination of bivalve molluscs, such as oysters, is a well-recognized food safety risk. The aim of this study was to assess virological hazards in market-ready oysters on the Dutch market. Non-targeted metagenome analysis was first performed on norovirus spiked-in samples showing linear and sensitive detection of norovirus GI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!