The emergence of drug-resistant Staphylococcus aureus (S. aureus) has limited drug options for the clinical treatment of S. aureus infections. Considering recent reports, therapeutic strategies targeting bacterial virulence hold great promise, and alpha-hemolysin (encoded by hla), a critical virulence factor of S. aureus, plays a vital role during bacterial infection. Herein, we demonstrated that hispidulin effectively inhibited the hemolytic activity of S. aureus USA300 without suppressing bacterial growth, along with inhibiting hla transcription and expression in a dose-dependent manner. As heptamer formation is essential for hla-mediated invasion of cells, nevertheless, hispidulin did not affect the deoxycholate-induced oligomerization of hla, suggesting that hispidulin did not affect the protein activity of hla. In vitro assays illustrated that hispidulin bound to agrA, a crucial protein in quorum sensing. Meanwhile, hispidulin alleviated A549 cell damage caused by S. aureus USA300 and reduced lactate dehydrogenase release. In vivo studies showed that hispidulin had a protective effect against pneumonia caused by S. aureus USA300 in mice. S. aureus did not develop resistance to hispidulin in the short term. Interestingly, our research indicated that hispidulin synergized with the antibacterial activity of cefoxitin. These results showed that hispidulin effectively inhibited α-hemolysin expression by inhibiting the agr quorum sensing of S. aureus. It has promise as an agent to treat S. aureus infection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micres.2022.127071 | DOI Listing |
J Glob Antimicrob Resist
December 2024
Department of Hygiene, Sapporo Medical University School of Medicine, Hokkaido, Sapporo 060-8556, Japan. Electronic address:
Objectives: Staphylococcus aureus is a major cause of bloodstream infections. The recent epidemiological features and antimicrobial resistance trend were analyzed for methicillin-resistant and susceptible S. aureus (MRSA/MSSA) isolates from blood samples in northern Japan.
View Article and Find Full Text PDFFEBS Open Bio
December 2024
College of Life Science, Jilin Normal University, Siping, China.
Methicillin-resistant Staphylococcus aureus (MRSA) poses a challenge for clinical treatment and combining antibiotics with other agents might be a promising strategy to overcome this challenge. This study explored the synergistic antibacterial activity of baicalin (traditional Chinese medicine extract) and the narrow-spectrum beta-lactam antibiotic oxacillin sodium, both of which are poorly active against MRSA in vitro. The combination of baicalin and oxacillin sodium showed a synergistic effect with a fractional inhibitory concentration index of 0.
View Article and Find Full Text PDFAnal Biochem
December 2024
Biochemistry Department, University of Otago, Dunedin, New Zealand. Electronic address:
Staphylococcus aureus is a significant human pathogen causing acute life-threatening, and chronic infections often linked to biofilms. This study conducted a comparative lipidomic analysis of a methicillin-resistant (MRSA) and a methicillin-susceptible (MSSA) S. aureus strain in both planktonic and biofilm cultures using liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR) spectroscopy.
View Article and Find Full Text PDFMil Med
December 2024
Dr. Philip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
Introduction: Wounds are colonized frequently by heterogeneous microflora. Pseudomonas aeruginosa (PA) and Staphylococcus aureus (SA) are two of the most isolated bacterial species from wounds, and both typically form highly organized biofilms. Nitric oxide (NO) is a short-lived, diatomic, lipophilic gas with antimicrobial activity.
View Article and Find Full Text PDFJDS Commun
November 2024
Facultad de Microbiología, Universidad de Costa Rica, San Pedro de Montes de Oca, 11501-2060 San José, Costa Rica.
This study reports the finding of 3 ST8-t008-SCC IVa (2B) methicillin-resistant (MRSA) strains in fresh cheese purchased within a single market in Costa Rica. In line with the finding of the resistance genes , , (C), and (A) in their genomes, these bacteria showed phenotypic resistance to multiple β-lactams and erythromycin. In addition, they carry genes for acquired resistance to aminoglycosides () and fosfomycin (), and genes for a myriad of virulence factors, including adhesins, hemolysins, and exotoxins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!