Insight into the adsorption isotherms and kinetics of Pb (II) on pellet biochar via in-situ non-destructive 3D visualization using micro-computed tomography.

Bioresour Technol

Engineering Laboratory for Agro Biomass Recycling & Valorizing, College of Engineering, China Agricultural University, Box 191, Beijing 100083, China. Electronic address:

Published: August 2022

The micro-CT technique was applied in adsorption visualization of Pb (II) on the pellet biochar derived from wheat straw to provide information on understanding the complex heavy metal-biochar interaction during the process. The 3D distribution of Pb (II) on the biochar was well in line with the results of isothermal and kinetic adsorption experiments as well as those of simulation with Langmuir and Weber-Morris intraparticle diffusion (IPD) models. It was shown that Pb (II) was preferentially adsorbed on the surface of the biochar at an initial Pb (II) concentration of 50 mg/L. However, at a higher initial concentration of 100 mg/L, the adsorption process occurred in a two-stage regime, namely rapid surface adsorption followed by slow intraparticle diffusion. This research offered a new way for investigation of the complex adsorption behavior of heavy metals on biochar, as well as construction and optimization of related adsorption models.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2022.127406DOI Listing

Publication Analysis

Top Keywords

pellet biochar
8
biochar well
8
intraparticle diffusion
8
initial concentration
8
adsorption
6
biochar
5
insight adsorption
4
adsorption isotherms
4
isotherms kinetics
4
kinetics pellet
4

Similar Publications

Densification of biomass through pelletizing offers a promising approach to producing clean biofuels from renewable resources. This study, which investigates the impact of additive blends on wheat straw pellet making and upgrading the physiochemical properties, has revealed exciting possibilities. Five additives, including sawdust (SD), bentonite clay (BC), corn starch (S), crude glycerol (CG), and biochar (BioC), were chosen for this study.

View Article and Find Full Text PDF

Behaviors of bio-modified calcium-based sorbents for simultaneous CO/NO removal: Correlation of the characteristics of biomass, modified Ca-sorbent and reactivity.

J Environ Manage

January 2025

Key Laboratory of Energy Thermal Conversion and Control, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, PR China.

Article Synopsis
  • Simultaneous removal of CO and NO from flue gas is important for reducing atmospheric pollutants and carbon emissions.
  • An optimized calcium oxide (CaO) system is proposed using bio-modified calcium-based pellets, where biomass pyrolysis enhances efficiency.
  • The study finds that different biomass types impact pellet characteristics, with cellulose improving pellet structure for better CO/NO removal, while lignin increases biochar production, affecting capture performance based on pore structure and biochar content.
View Article and Find Full Text PDF

The Campylobacter prevalence in free-ranging broiler flocks is usually higher than in conventional flocks, and effective interventions for this production type are needed. This study aimed to investigate the on-farm Campylobacter-reducing effect of feeding three feed additives or a water additive to broilers from hatching to slaughter. Newly hatched Ranger Gold broilers (n = 140) were randomly placed into five cages (n = 28/cage) within a flock of 6,000 broilers.

View Article and Find Full Text PDF

Fertilization of potentially toxic element-contaminated soils remediated with reusable biochar pellets using rice straw, pig manure and their derived biochar.

Environ Pollut

December 2024

Hubei Key Laboratory of Soil Environment and Pollution Remediation, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China. Electronic address:

Potentially toxic elements (PTEs) are widespread pollutants in agricultural fields, presenting significant challenges to the maintenance of soil ecological functions while simultaneously reducing their concentrations. This study detailed the development of a high-strength reusable silicate magnetic composite biochar sphere (SMBCS) characterized by superior magnetic and adsorption properties, synthesized from natural minerals and biochar. The application of SMBCS over three consecutive remediation cycles led to reductions in cadmium (Cd), lead (Pb), and arsenic (As) concentrations in soil by 28.

View Article and Find Full Text PDF

Biochar pellets produced from the solid fraction of manure-based digestates are rich in phosphorus (P) and may represent a P source that is easy to handle and suitable for transport to P-deficient regions. However, the effect of feedstock composition and particle size on P availability in this type of biochar remains unexplored. To evaluate the effect of particle size on the short-term P availability in biochars derived from manure digestate solids, an incubation experiment was carried out, in which four biochars produced from digestate solids in powder and pellet form were incubated with three soils of low P content.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!