The aim of this study was to investigate the influence of organic solvents on the electrophoretic separation of phenylethylamines. The background electrolyte composition was adjusted with different protic (methanol, ethanol, and 2-propanol) and aprotic (dimethyl sulfoxide and acetonitrile) solvents. Two groups of analytes were studied. The first group contained phenylethylamines with an amine group only, DL-1-phenylethylamine and amphetamine. The second group represented phenylethylamines with both amine and phenolic hydroxyl groups, dopamine and tyramine. Experiments revealed no or minor influence of the organic modifiers on the electromigration behavior of the analytes from the first group (containing only the amine group) and a drastic effect on the second group (containing the additional phenolic hydroxyl group). Dopamine and tyramine showed various electrostatic, hydrophobic, and hydrogen-bonding interactions with both protic and aprotic organic solvents. The dependence of the electrophoretic mobility of dopamine and tyramine on the concentration of the organic solvents provided direct evidence of the formation of hydrogen bonds between dopamine or tyramine and the organic solvent. The baseline separation was achieved by the addition of at least 20% v/v of organic solvent (protic or aprotic) to the background electrolyte. The analyte migration time repeatabilities were within 0.7-4.1% for absolute and 0.2-1.9% for normalised migration times. The proposed bonding mechanism and behavior of phenylethylamines were examined and confirmed by NMR spectroscopy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2022.463169DOI Listing

Publication Analysis

Top Keywords

organic solvents
16
dopamine tyramine
16
influence organic
12
background electrolyte
8
phenylethylamines amine
8
amine group
8
second group
8
phenolic hydroxyl
8
protic aprotic
8
organic solvent
8

Similar Publications

Reline, which is composed of choline chloride and urea in a molar ratio of 1:2, is the first and most extensively studied deep eutectic solvent (DES). In certain applications, reline is blended with organic solvents, dimethyl sulfoxide (DMSO) in most cases, to gain improved properties. Therefore, it is crucial to have a profound understanding of the impact of DMSO on the dynamics and structures of the species in the binary mixtures.

View Article and Find Full Text PDF

The carbon dioxide (CO) capture and utilization strategy has emerged as an innovative and multifaceted approach to counteract carbon emissions. In this study, a highly porous muffin polyhedral barium (Ba) ̵ organic framework (BaTATB; HTATB = 4,4',4″--triazine-2,4,6-triyl-tribenzoic acid) was synthesized solvothermally. The three-dimensional honeycomb pore architectures were densely populated with Lewis acidic Ba(II) metal sites and basic nitrogen-rich triazines.

View Article and Find Full Text PDF

Mechanochemistry: Unravelling the Impact of Metal Leaching in Organic Synthesis.

ChemSusChem

January 2025

Universita degli study di cagliari, Dipartimento di Scienze Chimiche e Geologiche, Cittadella Universitaria, SS 554 bivio per Sestu, 09042, Monserrato, ITALY.

Solvent-free techniques have gained considerable attention in recent years due to their environmental advantages and potential to enable chemical reactivities beyond the reach of traditional solution-based methods. Mechanochemistry has emerged as a groundbreaking approach to drive sustainable chemical processes. Despite its promise, some challenges still need to be explored, including the overlooked issue of material leaching during grinding, a phenomenon in which components from milling media or reaction vessels, such as stainless steel, unintentionally alter reaction outcomes.

View Article and Find Full Text PDF

Rapid and Green Anion-Assisted Mechanochemical Peptide Cyclization.

ACS Sustain Chem Eng

January 2025

Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia.

A novel mechanochemical approach is described for chloride-templated head-to-tail macrocyclization of a pentapeptide and a hexapeptide. This straightforward method allows the solvent-free preparation of cyclopeptides with yields comparable to solution-based approaches without the need for high dilution of the reaction mixture and with significantly reduced reaction times and organic waste amount.

View Article and Find Full Text PDF

We report the synthesis, characterization, and catalytic applications of N,N'-diaryl diazabutadiene (DAB) Ni(0) complexes stabilized by alkene ligands. These complexes are soluble and stable in several organic solvents, making them ideal candidates for in situ catalyst formation during high-throughput experimentation (HTE). We used HTE to evaluate these Ni(0) precatalysts in a variety of Suzuki and C-N coupling reactions, and they were found to have equal or better performance than the still-standard Ni(0) source, Ni(COD)2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!