https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=35660010&retmode=xml&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term=nanoindentation+musculoskeletal&datetype=edat&usehistory=y&retmax=5&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908
Musculoskeletal tissues, such as bone, cartilage, and muscle, are natural composite materials that are constructed with a hierarchical structure ranging from the cell to tissue level. The component differences and structural complexity, together, require comprehensive multiscale mechanical characterization. In this review, we focus on nanoindentation testing, which is used for nanometer to sub-micrometer length scale mechanical characterization. In the following context, we will summarize studies of nanoindentation in musculoskeletal research, examine the critical factors that affect nanoindentation testing results, and briefly summarize other commonly used techniques that can be conjoined with nanoindentation for synchronized imaging and colocalized characterization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pbiomolbio.2022.05.010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!