Generation of transmitochondrial cybrids using a microfluidic device.

Exp Cell Res

R&D Laboratory for Innovative Biotherapeutics, Graduate School of Pharmaceutical Sciences, Kyushu Univ., 3-1-1 Maidasi, Higashi, Fukuoka, 8112-8582, Japan.

Published: September 2022

Mitochondrial cloning is a promising approach to achieve homoplasmic mitochondrial DNA (mtDNA) mutations. We previously developed a microfluidic device that performs single mitochondrion transfer from a mtDNA-intact cell to a mtDNA-less (ρ) cell by promoting cytoplasmic connection through a microtunnel between them. In the present study, we described a method for generating transmitochondrial cybrids using the microfluidic device. After achieving mitochondrial transfer between HeLa cells and thymidine kinase-deficient ρ143B cells using the microfluidic device, selective culture was carried out using a pyruvate and uridine (PU)-absent and 5-bromo-2'-deoxyuridine-supplemented culture medium. The resulting cells contained HeLa mtDNA and 143B nuclei, but both 143B mtDNA and HeLa nuclei were absent in these cells. Additionally, these cells showed lower lactate production than parent ρ143B cells and disappearance of PU auxotrophy for cell growth. These results suggest successful generation of transmitochondrial cybrids using the microfluidic device. Furthermore, we succeeded in selective harvest of generated transmitochondrial cybrids under a PU-supplemented condition by removing unfused ρ cells with puromycin-based selection in the microfluidic device.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yexcr.2022.113233DOI Listing

Publication Analysis

Top Keywords

microfluidic device
24
transmitochondrial cybrids
16
cybrids microfluidic
12
generation transmitochondrial
8
ρ143b cells
8
cells
7
microfluidic
6
device
6
cybrids
4
device mitochondrial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!