The COVID-19 pandemic has rapidly spread around the world. The rapid transmission of the virus is a threat that hinders the ability to contain the disease propagation. The pandemic forced widespread conversion of in-person to virtual care delivery through telemedicine. Given this gap, this article aims at providing a literature review of machine learning-based telemedicine applications to mitigate COVID-19. A rapid review of the literature was conducted in six electronic databases published from 2015 through 2020. The process of data extraction was documented using a PRISMA flowchart for inclusion and exclusion of studies. As a result, the literature search identified 1.733 articles, from which 16 articles were included in the review. We developed an updated taxonomy and identified challenges, open questions, and current data types. Our taxonomy and discussion contribute with a significant degree of coverage from subjects related to the use of machine learning to improve telemedicine in response to the COVID-19 pandemic. The evidence identified by this rapid review suggests that machine learning, in combination with telemedicine, can provide a strategy to control outbreaks by providing smart triage of patients and remote monitoring. Also, the use of telemedicine during future outbreaks could be further explored and refined.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9055383PMC
http://dx.doi.org/10.1016/j.artmed.2022.102312DOI Listing

Publication Analysis

Top Keywords

rapid review
12
machine learning
12
review machine
8
covid-19 pandemic
8
telemedicine
6
rapid
4
machine
4
learning approaches
4
approaches telemedicine
4
telemedicine scope
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!