The health and safety concerns associated with synthetic antioxidants has resulted in an urgent search for natural sources of antioxidants. Such antioxidants are not only convenient but may also have important therapeutic properties. Oilseed crops, for example, are rich in phenolic compounds some of which exhibit powerful antioxidant properties that have broad applications in both the food and feed industry. Often, the concentration of these phenolic compounds is affected by many processing conditions including temperature, pressure, pH, and extracting solvents. Hence it is important to optimize processing conditions to obtain maximum levels of those antioxidants with superior antioxidant activity. Oilseeds, such as canola and mustard, are rich sources of sinapates and kaempferol derivatives. When subjected to different processing conditions, including pressurized temperature, sinapates are converted to vinyl phenol derivatives, of which the major one is canolol. This chapter will focus on the nature of canolol and its applications in food and medicine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/bs.afnr.2022.03.003 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Research Center for Energy and Environmental Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
Unveiling the key influencing factors towards electrode/electrolyte interface control is a long-standing challenge for a better understanding of microscopic electrode kinetics, which is indispensable to building up guiding principles for designer electrocatalysts with desirable functionality. Herein, we exemplify the oxygen evolution reaction (OER) via water molecule oxidation with the iridium dioxide electrocatalyst and uncovered the significant mismatching effect of pH between local electrode surface and bulk electrolyte: the intrinsic OER activity under acidic or near-neutral condition was deciphered to be identical by adjusting this pH mismatching. This result indicates that the local pH effect at the electrified solid-liquid interface plays the main role in the "fake" OER performance.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia QLD 4072, Australia.
Steroids are organic compounds found in all forms of biological life. Besides their structural roles in cell membranes, steroids act as signalling molecules in various physiological processes and are used to treat inflammatory conditions. It has been hypothesised that in addition to their well-characterised genomic and non-genomic pathways, steroids exert their biological or pharmacological activities an indirect, nonreceptor-mediated membrane mechanism caused by steroid-induced changes to the physicochemical properties of cell membranes.
View Article and Find Full Text PDFACS Nano
January 2025
State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China.
Biofilm-induced chronic bacterial infections represent a significant challenge in modern medicine due to their resistance to conventional antibiotic treatments. Although photodynamic therapy (PDT) has emerged as a promising antibiotic-free antibacterial strategy, the hypoxic condition within biofilms and the lack of an effective local drug delivery system have limited the clinical effectiveness of photosensitizer (PS) agents. Herein, we propose a type of charge regulation-enhanced type I PS-loaded hydrogel dressing for treating biofilm infection.
View Article and Find Full Text PDFGenet Med Open
April 2024
UCSF Bioethics, University of California, San Francisco, CA.
Purpose: Sharing aggregate results with research participants is a widely agreed-upon ethical obligation; yet, there is little research on communicating study results to diverse populations enrolled in genomics research. This article describes the cocreation of a visual narrative to explain research findings to families enrolled in a clinical genomics research study.
Methods: The design process involved researchers, clinicians, study participants, a physician illustrator, and a health communications expert.
Front Pharmacol
December 2024
Department of Radiology, Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China.
Introduction: Although photodynamic therapy (PDT) shows considerable potential for cancer treatment due to its precise spatial control and reduced toxicity, effectively eliminating residual cells under hypoxic conditions remains challenging because of the resistance conferred by these cells.
Methods: Herein, we synthesize an amphiphilic PEGylated polyphosphoester and present a nanocarrier (NP) specifically designed for the codelivery of hydrophobic photosensitizer (chlorin e6, Ce6) and hypoxia-activated prodrugs (tirapazamine, TPZ). We investigate the antitumor effect of NP on both cellular and animal level.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!