Background: Mesenchymal stem cells (MSCs) derived from different tissues have variant biological characteristics, which may induce different performances in the treatment of diseases. At present, it is difficult to know which type of MSC is most suitable for acute liver failure (ALF), and there is no parallel study to compare MSCs from different tissues of the same donor.
Methods: In this study, we derived MSCs from three different perinatal tissues of the same donor: cord lining (CL), cord-placenta junction (CPJ) and fetal placenta (FP), respectively, for compared gene expression profiles by transcriptome sequencing, and ability of proliferation and immune regulation in vitro. In addition, the therapeutic effects (e.g., survival rate, histological evaluation, biochemical analysis) of CL-MSCs, FP-MSCs and CPJ-MSCs on ALF mouse model were compared.
Results: The transcriptome analysis showed that FP-MSCs have significantly high expression of chemokines compared to CPJ-MSCs and CL-MSCs, similar to the q-PCR result. Of note, we found that CPJ-MSCs and FP-MSCs could improve the survival rate of mice with ALF induced by carbon tetrachloride, but CL-MSCs had no difference with Sham group. Moreover, we also found that biomarkers of ALF (e.g., MDA, SOD and GSH-px) significantly improved post-CPJ-MSCs and FP-MSCs treatment, but not CL-MSCs and Sham group. However, CL-MSCs treatment leads to inflammatory reaction in the early stage (day 3) of ALF treatment but not found with other groups.
Conclusions: It is important to select the MSCs derived from different tissues with variant performance for therapeutic purpose, and the CPJ-MSCs and FP-MSCs cells can significantly improve the syndrome of ALF which is highly recommended for a potential therapeutic options for ALF.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9166497 | PMC |
http://dx.doi.org/10.1186/s13287-022-02909-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!