Background: Neuropathic pain is a common and severely disabling state that affects millions of people worldwide. Microglial activation in the spinal cord plays a critical role in the pathogenesis of neuropathic pain. However, the mechanisms underlying spinal microglial activation during neuropathic pain remain incompletely understood. Here, we investigated the role of Dickkopf (DKK) 3 and its interplay with microglial activation in the spinal cord in neuropathic pain.
Methods: In this study, we investigated the effects of intrathecal injection of recombinant DKK3 (rDKK3) on mechanical allodynia and microglial activation in the spinal cord after spared nerve injury (SNI) in rats by western blot (WB), immunofluorescence (IF), quantitative polymerase chain reaction (qPCR), and enzyme-linked immunosorbent assay (ELISA).
Results: We found that SNI induced a significant decrease in the levels of DKK3, Kremen-1 and Dishevelled-1 (DVL-1) and up-regulated the expression of phosphorylated apoptosis signal-regulating kinase 1 (p-ASK1), phosphorylated c-JUN N-terminal kinase (p-JNK), phosphorylated p38 (p-p38) in the spinal cord. Moreover, our results showed that exogenous intrathecal administration of rDKK3 inhibited expression of p-ASK1, p-JNK, p-p38, promoted the transformation of microglia from M1 type to M2 type, and decreased the production of pro-inflammatory cytokines compared to the rats of SNI + Vehicle. However, these effects were reversed by intrathecal administration of Kremen-1 siRNA or Dishevelled-1 (DVL-1) siRNA.
Conclusions: These results suggest that DKK3 ameliorates neuropathic pain via inhibiting ASK-1/JNK/p-38-mediated microglia polarization and neuroinflammation, at least partly, by the Kremen-1 and DVL-1 pathways.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9164405 | PMC |
http://dx.doi.org/10.1186/s12974-022-02495-x | DOI Listing |
Biomed Pharmacother
January 2025
Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurochemistry, 12 Smetna Str., Krakow 31-343, Poland. Electronic address:
Neuropathic pain is a disorder affecting the somatosensory nervous system. However, this condition is also characterized by significant neuroinflammation, primarily involving CNS-resident non-neuronal cells. A promising target for developing new analgesics is histamine H receptor (HR); thus, we aimed to determine the influence of a novel HR antagonist/inverse agonist, E-98 (1-(7-(4-chlorophenoxy)heptyl)-3-methylpiperidine), on pain symptoms and glia activation in model of neuropathic pain in male mice (chronic constriction injury to the sciatic nerve).
View Article and Find Full Text PDFPain Rep
February 2025
School of Pharmacy, Newcastle University, Newcastle-upon-Tyne, United Kingdom.
Despite advancements in preclinical and clinical spinal cord stimulation (SCS) research, the mechanisms of SCS action remain unclear. This may result from challenges in translatability of findings between species. Our systematic review (PROSPERO: CRD42023457443) aimed to comprehensively characterize the important translational components of preclinical SCS models, including stimulating elements and stimulation specifications.
View Article and Find Full Text PDFACS Pharmacol Transl Sci
January 2025
Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Science Center, Amarillo, Texas 79106, United States.
Acetyl coenzyme A (acetyl-CoA), a pivotal regulatory metabolite, is a product of numerous catabolic reactions and a substrate for various anabolic responses. Its role extends to crucial physiological processes, such as glucose homeostasis and free fatty acid utilization. Moreover, acetyl-CoA plays a significant part in reshaping the metabolic microenvironment and influencing the progression of several diseases and conditions, including cancer, insulin resistance, diabetes, heart failure, fear, and neuropathic pain.
View Article and Find Full Text PDFJ Pain Res
January 2025
Programa de Pós-Graduação em Medicina (Cirurgia Geral), Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
Introduction: Diabetes mellitus (DM) has become a public health problem, which is associated with high morbidity and mortality, due to the chronic complications, such as diabetic neuropathy. Current recommendations for the treatment of neuropathic pain achieve a reduction of 30% in only 30% of cases. Therefore, it is necessary to identify new therapeutic approaches to improve the quality of life of diabetic patients.
View Article and Find Full Text PDFInt J Pharm
January 2025
College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China; Jinhua Institute of Zhejiang University, Jinhua 321002, China; State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China; Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China. Electronic address:
Intense inflammatory responses and elevated levels of reactive oxygen species (ROS) extremely exacerbate the pathological process of spinal cord injury (SCI). Mesenchymal stem cell (MSC)-derived extracellular vesicles (EV) can mitigate SCI-related inflammation but their production yield remains limited. Alternatively, MSC-extruded nanovesicles (NV) inherit the therapeutic potential from MSCs and have a markedly higher yield than EV.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!