Neural microprobe modelling and microfabrication for improved implantation and mechanical failure mitigation.

Philos Trans A Math Phys Eng Sci

Microelectronics Lab (meLAB), James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK.

Published: July 2022

Careful design and material selection are the most beneficial strategies to ensure successful implantation and mitigate the failure of a neural probe in the long term. In order to realize a fully flexible implantable system, the probe should be easily manipulated by neuroscientists, with the potential to bend up to 90°. This paper investigates the impact of material choice, probe geometry, and crucially, implantation angle on implantation success through finite-element method simulations in followed by cleanroom microfabrication. The designs introduced in this paper were fabricated using two polyimides: (i) PI-2545 as a release layer and (ii) photodefinable HD-4110 as the probe substrate. Four different designs were microfabricated, and the implantation tests were compared between an agarose brain phantom and lamb brain samples. The probes were scanned in a 7 T PharmaScan MRI coil to investigate potential artefacts. From the simulation, a triangular base and 50 µm polymer thickness were identified as the optimum design, which produced a probe 57.7 µm thick when fabricated. The probes exhibit excellent flexibility, exemplified in three-point bending tests performed with a DAGE 4000Plus. Successful implantation is possible for a range of angles between 30° and 90°. This article is part of the theme issue 'Advanced neurotechnologies: translating innovation for health and well-being'.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9168446PMC
http://dx.doi.org/10.1098/rsta.2021.0007DOI Listing

Publication Analysis

Top Keywords

successful implantation
8
implantation
6
probe
5
neural microprobe
4
microprobe modelling
4
modelling microfabrication
4
microfabrication improved
4
improved implantation
4
implantation mechanical
4
mechanical failure
4

Similar Publications

Objective: To assess the impact of cochlear implantation (CI) and speech perception outcomes on the quality of life (QoL) of adult CI users and their communication partners (CP) one-year post-implantation.

Design: This research is part of a prospective multicenter study in The Netherlands, called SMILE (Societal Merit of Intervention for hearing Loss Evaluation).

Study Sample: Eighty adult CI users completed speech perception testing and the Nijmegen Cochear Implant Questionnaire (NCIQ).

View Article and Find Full Text PDF

Background: Precise and accurate glenoid preparation is important for the success of shoulder arthroplasty. Despite advancements in preoperative planning software and enabling technologies, most surgeons execute the procedure manually. Patient-specific instrumentation (PSI) facilitates accurate glenoid guide pin placement for cannulated reaming; however, few commercially available systems offer depth of reaming control.

View Article and Find Full Text PDF

How to correct QT interval after cardiac resynchronisation therapy.

J Electrocardiol

January 2025

Victorian Heart Institute, Monash University, Clayton, VIC, Australia; Victorian Heart Hospital, Clayton, VIC, Australia. Electronic address:

Introduction: This study evaluates various formulae used to correct the QT interval in patients with wide QRS complexes to calculate corrected QT (QTc) following Cardiac Resynchronisation Therapy (CRT).

Methods: We included patients with severe heart failure and left bundle branch block, presenting with a QRS duration of at least 120 milliseconds, who underwent successful CRT implantation. Patients were excluded if they had non-lateral left ventricular lead placement, metabolic disorders, atrial fibrillation, atrial tachycardia, or high-degree atrioventricular block prior to implantation.

View Article and Find Full Text PDF

Determinants for successful medullary fixation of the superior ramus.

Injury

January 2025

Department of Orthopaedic Surgery, Cedars - Sinai Medical Center, Los Angeles, CA, USA. Electronic address:

Objectives: The purpose of this study is to determine what demographic and anatomical variables affect successful placement of a superior medullary ramus screw, and how they affect the maximal diameter of that screw.

Methods: Design: Prognostic Level IV SETTING: Level I Trauma Center Patients/Participants: Two hundred consecutive patients underwent computed tomography (CT) of the pelvis. We included those patients aged 18 and older without osseous injury or abnormalities precluding measurement.

View Article and Find Full Text PDF

Transcatheter closure (TCC) of certain ventricular septal defect (VSD) subtypes typically requires arteriovenous loop (AVL) formation or retrograde transarterial deployment. Upfront transvenous cannulation from the right ventricle avoids arterial access and loop-related complications. We retrospectively reviewed data of patients who underwent TCC for perimembranous, intraconal, and post-surgical residual VSDs at our institution (January 2019-December 2023).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!