Salmonella Central Carbon Metabolism Enhances Bactericidal Killing by Fluoroquinolone Antibiotics.

Antimicrob Agents Chemother

Institute of Microbiology and Epizootics, Free University of Berlin, Centre for Infection Medicine, Berlin, Germany.

Published: July 2022

The efficacy of killing by bactericidal antibiotics has been reported to depend in large part on the ATP levels, with low levels of ATP leading to increased persistence after antibiotic challenge. Here, we show that an operon deletion strain of Salmonella enterica serovar Typhimurium lacking the ATP synthase was at least 10-fold more sensitive to killing by the fluoroquinolone antibiotic ciprofloxacin and yet showed either increased survival or no significant difference compared with the wild-type strain when challenged with aminoglycoside or β-lactam antibiotics, respectively. The increased cell killing and reduced bacterial survival (persistence) after fluoroquinolone challenge were found to involve metabolic compensation for the loss of the ATP synthase through central carbon metabolism reactions and increased NAD(P)H levels. We conclude that the intracellular ATP levels do not correlate with bactericidal antibiotic persistence to fluoroquinolone killing; rather, the central carbon metabolic pathways active at the time of challenge and the intracellular target of the antibiotic determine the efficacy of treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9295562PMC
http://dx.doi.org/10.1128/aac.02344-21DOI Listing

Publication Analysis

Top Keywords

central carbon
12
carbon metabolism
8
killing fluoroquinolone
8
atp levels
8
atp synthase
8
persistence fluoroquinolone
8
killing
5
atp
5
salmonella central
4
metabolism enhances
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!