Liver-stage in humans is an early stage of malarial infection. Decoquinate (DQ) has a potent multistage antimalarial activity. However, it is practically water insoluble. In this study, the hot-melt extrusion (HME) approach was employed to prepare solid dispersions of DQ to improve oral bioavailability. The DQ dispersions were homogeneous in an aqueous suspension that contained most DQ (>90%) in the aqueous phase. Soluplus, a solubilizer, was found compatible with DQ in forming nanoparticle formulations during the HME process. Another excipient HPMC AS-126 was also proven to be suitable for making DQ nanoparticles through HME. Particle size and antimalarial activity of HME DQ suspensions remained almost unchanged after storage at 4°C for over a year. HME DQ was highly effective at inhibiting infection at both the liver stage and blood stage. HME DQ at 3 mg/kg by oral administration effectively prevented infection in mice inoculated with Plasmodium berghei sporozoites. Orally administered HME DQ at 2,000 mg/kg to mice showed no obvious adverse effects. HME DQ at 20 mg/kg orally administered to rats displayed characteristic distributions of DQ in the blood with most DQ in the blood cells, revealing the permeability of HME DQ into the cells in relation to its antimalarial activity. The DQ dispersions may be further developed as an oral formulation targeting infection at the liver stage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9211432PMC
http://dx.doi.org/10.1128/aac.02218-21DOI Listing

Publication Analysis

Top Keywords

antimalarial activity
12
hme
9
hot-melt extrusion
8
infection liver
8
liver stage
8
orally administered
8
infection
5
preparation decoquinate
4
decoquinate solid
4
solid dispersion
4

Similar Publications

Cerebral malaria (CM) is a severe complication of Plasmodium falciparum infection, with resistance to antimalarial drugs, including artemisinin-based combination therapies(ACTs), posing a significant threat. CD4+ naive cells expressing CCR7 are known to play a protective role, as they readily migrate to secondary lymphoid tissues activated by CCL19 chemokines. In an effort to address this challenge, we investigated the impact of Annona muricata, an herbaceous and immunomodulatory plant, on CCL19 concentration.

View Article and Find Full Text PDF

Background: Our research highlights the synthesis of newer antimalarial compounds using molecular modeling studies.

Objective: The study investigates a series of isocryptolepine derivatives from previous literature, focusing on their biological activities as antimalarial agents.

Methods: Computational methods such as molecular docking and QSAR were employed to gain insights into the interaction between the synthesized compounds and the target enzyme PfDHFR-TS.

View Article and Find Full Text PDF

Risk and protective factors of disease flare during pregnancy in systemic lupus erythematosus: a systematic review and meta-analysis.

Clin Rheumatol

January 2025

Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Shuaifuyuan, Beijing, 100730, China.

To synthesize available evidence on predictive factors associated with systemic lupus erythematosus (SLE) flares during pregnancy, we systematically searched MEDLINE, Embase, and the Cochrane Library through January 2024 for observational studies on risk and protective factors of SLE flares during pregnancy. Odds ratios (OR) and mean differences (MD), as well as their 95% confidence intervals (CI) were used to quantify effect sizes. We employed fixed-effect or random-effect models based on heterogeneity assessments (I statistics).

View Article and Find Full Text PDF

Unlabelled: is a high-priority organism for the development of new antibacterial treatments. We found that the antimalarial medication mefloquine (MFQ) permeabilized the bacterial cell membrane of , decreased membrane fluidity, and caused physical injury to the membrane. MFQ also maintained activity across different pH conditions (PH range 5-8).

View Article and Find Full Text PDF

Background: The World Health Organization conditionally recommends reactive drug administration to reduce malaria transmission in settings approaching elimination. However, few studies have evaluated the impact of reactive focal drug administration (rFDA) in sub-Saharan Africa, and none have evaluated it under programmatic conditions. In 2016, Senegal's national malaria control programme introduced rFDA, the presumptive treatment of compound members of a person with confirmed malaria, and reactive mass focal drug administration (rMFDA), an expanded effort including neighbouring compounds during an outbreak, in 10 low transmission districts in the north of the country.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!