A visible-light-mediated, enantioselective approach to axially chiral alkenes is described. Starting from a racemic mixture, a major alkene enantiomer is formed due to selective triplet energy transfer from a catalytically active chiral sensitizer. A catalyst loading of 2 mol % was sufficient to guarantee consistently high enantioselectivities and yields (16 examples, 51%-quant., 81-96% ). NMR studies and DFT computations revealed that triplet energy transfer is more rapid within the substrate-catalyst complex of the minor alkene enantiomer. Since this enantiomer is continuously racemized, the major enantiomer is enriched in the photostationary state.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.2c02511 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!