The aim of the current study was to examine the efficacy of the leaf, stem and rhizome of Curcuma aeruginosa Roxb. for their phytochemical content, antioxidant and anti-cancer activities. The different parts of C. aeruginosa were subjected to sequential extraction to give three fractions viz., hexane, ethyl acetate and methanol extract. The cytotoxic effect and the mode of action against A-549 human lung adenocarcinoma and HeLa cell lines were examined. C. aeruginosa presented no significant toxic effect in normal human lung cells (L-132). The methanol extracts were found to be the most cytotoxic and further investigation was carried out to understand the effects. The methanol extracts induced DNA damage after 24 h with significant increase in tail DNA and tail moment when compared to untreated control. Up-regulation in the expression of the caspase - 8 and - 3 activity was observed after 48 h of treatment. The mechanism of cell death and apoptosis induced by the methanol extracts on A549 and HeLa cells were studied using fluorescent staining. Bioactive compounds detected from the HPLC revealed phenol and flavonoid compounds: Gallic acid, quercetin, caffeic acid, kaempferol, rutin, coumaric acid and naringenin. GC-MS results identified the presence of sesquiterpenoids: α-curcumene, curzerene curcumenol, curzerenone epicurzerenone, caryophyllene oxide and diterpenoid, andrographolide. These compounds are known for inducing apoptosis in human cancer cells through caspase - dependent pathways. Therefore, C. aeruginosa and its potential to induce apoptosis in cancer cells suggest that they have potential in medical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2022.113039 | DOI Listing |
Fitoterapia
January 2025
Department of Pharmaceutical Biology, German University in Cairo GUC, 11835 New Cairo City, Cairo, Egypt.
Genus Acacia comprises around 1500 species. They are widely used to treat inflammation as well as bacterial and fungal infections as they are enriched in phytochemicals, especially phenolics. The aim of this study was to evaluate the antibacterial activity of leaves' methanolic extracts of twelve Acacia species growing in Egypt against Vibrio parahaemolyticus, Salmonella enterica, Listeria monocytogens, Klebsiella pnemoniae, Bacillus aquimaris, Bacillus subtilis, and Escherichia coli.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Department of Biosciences, Integral University, Lucknow, India.
Introduction: Diabetic retinopathy is a significant microvascular disorder and the leading cause of vision impairment in working-age individuals. Hyperglycemia triggers retinal damage through mechanisms such as the polyol pathway and the accumulation of advanced glycation end products (AGEs). Inhibiting key enzymes in this pathway, aldose reductase (AR) and sorbitol dehydrogenase (SD), alongside preventing AGE formation, may offer therapeutic strategies for diabetic retinopathy and other vascular complications.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Research and Development, Paktex Industries, 2.5 KM Tatlay Road, Kamoke, Gujranwala, 52470, Pakistan.
Plants are the rich source of biologically active compounds which can be obliging against various pathogenic microorganisms and cancerous diseases. The current study evaluated the antibacterial potential of aqueous, methanol, ethanol, and acetone extracts of Malus domestica (apple), Cinnamomum verum (cinnamon) and Trachyspermum ammi (ajwain) via agar well diffusion methods and minimum inhibitory concentration (MIC) in (mm) against Staphylococcus aureus (ATCC 25923) and Salmonella typhi (ATCC 19430). The antioxidant properties including total phenolic content (TPC), total flavonoid content (TFC), DPPH and reducing power was determined by UV/VIS spectrophotometery and all the results interpreted through one way ANOVA (STATISTICA).
View Article and Find Full Text PDFAppl Biochem Biotechnol
January 2025
Tissue Culture and Drug Discovery Laboratory, Department of Biotechnology, Anna University, Chennai, 600 025, India.
Acta Parasitol
January 2025
Department of Molecular Biology and Genetics, Ordu University, Ordu, Turkey.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!