Albumin is an exquisite tool of nature used in biomedicine to achieve long blood residence time for drugs, but the payload it can carry is typically limited to one molecule per protein. In contrast, synthetic macromolecular prodrugs contain multiple copies of drugs per polymer chain but offer only a marginal increase in the circulation lifetime of the drugs. We combine the benefits of the two platforms and at the same time overcome their respective limitations. Specifically, we develop the synthesis of albumin-polymer-drug conjugates to obtain long circulating, high payload drug delivery vehicles. In vivo data validate that albumin endows the conjugate with a blood residence time similar to that of the protein and well exceeding that of the polymer. Therapeutic activity of the conjugates is validated using prodrugs of panobinostat, an HIV latency reversal agent, in which case the conjugates matched the drug in terms of efficacy of treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsmacrolett.6b00544 | DOI Listing |
ACS Macro Lett
May 2018
Department of Chemistry, Aarhus University, Aarhus 8000, Denmark.
Antiretroviral therapy (ART) has revolutionized HIV treatment, yet grand challenges remain: (i) short blood and body residence time of the antiviral drugs, (ii) relative poor antiretroviral drug penetrance into key tissue reservoirs of viral infection, namely, the spleen and lymph nodes, and (iii) obstacles in different pharmacokinetics of the necessary combination drugs. We present a novel drug delivery approach that simultaneously overcomes these limitations. We designed albumin-polymer-drug conjugates where albumin ensures long body residence time as well as lymphatic accumulation of the conjugate.
View Article and Find Full Text PDFACS Macro Lett
October 2016
Department of Infectious Diseases, Aarhus University Hospital, DK-8000 Aarhus C, Denmark.
Albumin is an exquisite tool of nature used in biomedicine to achieve long blood residence time for drugs, but the payload it can carry is typically limited to one molecule per protein. In contrast, synthetic macromolecular prodrugs contain multiple copies of drugs per polymer chain but offer only a marginal increase in the circulation lifetime of the drugs. We combine the benefits of the two platforms and at the same time overcome their respective limitations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!