Mitochondria are involved in many cellular activities, including energy metabolism and biosynthesis of nucleotides, fatty acids and amino acids. Mitochondrial morphology is a key factor in dictating mitochondrial functions. Here, we report that the acyl-CoA-binding protein (ACBP) Acb1 in the fission yeast Schizosaccharomyces pombe is required for the maintenance of tubular mitochondrial morphology and proper mitochondrial respiration. The absence of Acb1 causes severe mitochondrial fragmentation in a dynamin-related protein Dnm1-dependent manner and impairs mitochondrial respiration. Moreover, Acb1 regulates the remodelling of lipid droplets in nutrient-rich conditions. Importantly, Acb1 promotes cell survival when cells are cultured in nutrient-rich medium. Hence, our findings establish roles of ACBP in regulating mitochondria, lipid droplets and cell viability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/1873-3468.14415 | DOI Listing |
Zhejiang Da Xue Xue Bao Yi Xue Ban
January 2025
School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China.
Objectives: To investigate the effect of pachymic acid on brown/beige adipocyte differentiation and lipid metabolism in preadipocytes 3T3-L1 MBX.
Methods: The brown cocktail method was employed to induce 3T3-L1 MBX cells to differentiate into beige adipocytes. The impact of pachymic acid on the viability of 3T3-L1 MBX preadipocytes was evaluated using the CCK-8 assay.
J Neuroinflammation
January 2025
Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
Lipid droplets (LDs), serving as the convergence point of energy metabolism and multiple signaling pathways, have garnered increasing attention in recent years. Different cell types within the central nervous system (CNS) can regulate energy metabolism to generate or degrade LDs in response to diverse pathological stimuli. This article provides a comprehensive review on the composition of LDs in CNS, their generation and degradation processes, their interaction mechanisms with mitochondria, the distribution among different cell types, and the roles played by these cells-particularly microglia and astrocytes-in various prevalent neurological disorders.
View Article and Find Full Text PDFRespir Res
January 2025
Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan.
Background: Recent advances in comprehensive gene analysis revealed the heterogeneity of mouse lung fibroblasts. However, direct comparisons between these subpopulations are limited due to challenges in isolating target subpopulations without gene-specific reporter mouse lines. In addition, the properties of lung lipofibroblasts remain unclear, particularly regarding the appropriate cell surface marker and the niche capacity for alveolar epithelial cell type 2 (AT2), an alveolar tissue stem cell.
View Article and Find Full Text PDFMicroglia modulate their cell state in response to various stimuli. Changes to cellular lipids often accompany shifts in microglial cell state, but the functional significance of these metabolic changes remains poorly understood. In human induced pluripotent stem cell-derived microglia, we observed that both extrinsic activation (by lipopolysaccharide treatment) and intrinsic triggers (the Alzheimer's disease-associated genotype) result in accumulation of triglyceride-rich lipid droplets.
View Article and Find Full Text PDFWhile fructose is a key dietary component, concerns have been raised about its potential risks to the liver. This study aimed to assess quercetin's protective effects against fructose-induced mouse hepatic steatosis. Thirty-two male C57BL/6J mice were randomly allocated into four groups: control, high fructose diet (HFrD), HFrD supplemented with low-dose quercetin (HFrD+LQ), and HFrD supplemented with high-dose quercetin (HFrD+HQ).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!