Various COVID-19 vaccines are currently deployed, but their immunization varies and decays with time. Antibody level is a potent correlate to immune protection, but its quantitation relies on intensive laboratory techniques. Here, we report a decentralized, instrument-free microfluidic device that directly visualizes SARS-CoV-2 antibody levels. Magnetic microparticles (MMPs) and polystyrene microparticles (PMPs) can bind to SARS-CoV-2 antibodies simultaneously. In a microfluidic chip, this binding reduces the incidence of free PMPs escaping from magnetic separation and shortens PMP accumulation length at a particle dam. This visual quantitative result enables use in either sensitive mode [limit of detection (LOD): 13.3 ng/ml; sample-to-answer time: 70 min] or rapid mode (LOD: 57.8 ng/ml; sample-to-answer time: 20 min) and closely agrees with the gold standard enzyme-linked immunosorbent assay. Trials on 91 vaccinees revealed higher antibody levels in mRNA vaccinees than in inactivated vaccinees and their decay in 45 days, demonstrating the need for point-of-care devices to monitor immune protection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9166397PMC
http://dx.doi.org/10.1126/sciadv.abn6064DOI Listing

Publication Analysis

Top Keywords

antibody levels
12
particle dam
8
sars-cov-2 antibody
8
immune protection
8
ng/ml sample-to-answer
8
sample-to-answer time
8
microfluidic particle
4
dam direct
4
direct visualization
4
visualization sars-cov-2
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!