Softening and Residual Loss Modulus of Jammed Grains under Oscillatory Shear in an Absorbing State.

Phys Rev Lett

Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan.

Published: May 2022

AI Article Synopsis

Article Abstract

From a theoretical study of the mechanical response of jammed materials comprising frictionless and overdamped particles under oscillatory shear, we find that the material becomes soft, and the loss modulus remains nonzero even in an absorbing state where any irreversible plastic deformation does not exist. The trajectories of the particles in this region exhibit hysteresis loops. We succeed in clarifying the origin of the softening of the material and the residual loss modulus with the aid of Fourier analysis. We also clarify the roles of the yielding point in the softening to distinguish the plastic deformation from reversible deformation in the absorbing state.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.128.208002DOI Listing

Publication Analysis

Top Keywords

loss modulus
12
absorbing state
12
residual loss
8
oscillatory shear
8
plastic deformation
8
softening residual
4
modulus jammed
4
jammed grains
4
grains oscillatory
4
shear absorbing
4

Similar Publications

In natural environments, most rocks possess internal fissures and are often exposed to diverse external loads arising from engineering activities and ground stress, among other factors. This study aims to explore the influence of different loading rates on the mechanical properties and acoustic emission (AE) characteristics of fissured rocks and to develop an intrinsic damage model. To achieve this, prefabricated fissured rock specimens that mimic natural rocks were prepared.

View Article and Find Full Text PDF

Yogurt is a popular milk-based product known for its nutritional benefits and effects on the large intestine. However, yogurt production faces challenges like texture, consistency, and syneresis. Hydrocolloids, such as gums and polysaccharides, can enhance yogurt's consistency and rheological properties.

View Article and Find Full Text PDF

High-pressure treatment was utilized in this study to produce high-quality, reduced-sodium pork gels with desirable texture and sensory properties, addressing the challenge of maintaining quality in low-sodium meat products to meet health-conscious consumer demands. High-pressure treatment applied within the range of 150-200 MPa significantly reduced cooking loss while maintaining moisture content and provided an ideal network structure for reduced-sodium pork gels. High-pressure treatment at up to 100-200 MPa, in combination with added sodium chloride and sodium polyphosphate, was evaluated for its effects on gel texture, with results indicating that high-pressure treatment significantly improved breaking stress (increased by 10.

View Article and Find Full Text PDF

Comparative Analysis of Biochemical Parameters, Thermal Behavior, Rheological Features, and Gelling Characteristics of Thai Ligor Hybrid Chicken and Broiler Meats.

Foods

December 2024

Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand.

Genetic differences typically cause differences in the structure and function of proteins in meat. The objective of this research was to examine the biochemical characteristics and functional behavior of proteins in fresh composite meat from Thai Ligor hybrid chicken (LC) and commercial broiler chicken (BC). The composite meat samples, which comprise minced breast and thigh without skin from 20 chicken carcasses in a 1:1 (/) ratio, were randomly selected for analysis using the completely randomized design (CRD).

View Article and Find Full Text PDF

Cemented Sand, Gravel, and Rock (CSGR) dams have traditionally used either Conventional Vibrated Concrete (CVC) or Grout-Enriched Roller Compacted Concrete (GERCC) for protective and seepage control layers in low- to medium-height dams. However, these methods are complex, prone to interference, and uneconomical due to significant differences in the expansion coefficient, elastic modulus, and hydration heat parameters among CSGR, CVC, and GERCC. This complexity complicates quality control during construction, leading to the development of Grout-Enriched Vibrated Cemented Sand, Gravel, and Rock (GECSGR) as an alternative.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!