Magnetic monopoles have a long history of theoretical predictions and experimental searches, carrying direct implications for fundamental concepts such as electric charge quantization. We analyze in detail for the first time magnetic monopole production from collisions of cosmic rays bombarding the atmosphere. This source of monopoles is independent of cosmology, has been active throughout Earth's history, and supplies an irreducible monopole flux for all terrestrial experiments. Using results for robust atmospheric fixed target experiment flux of monopoles, we systematically establish direct comparisons of previous ambient monopole searches with monopole searches at particle colliders and set leading limits on magnetic monopole production in the ∼5-100 TeV mass range.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.128.201101 | DOI Listing |
Environ Monit Assess
January 2025
Laboratory for Ecotoxicology and Environmental Forensics, University of Benin, PMB 1154, Benin City, Nigeria.
This research was carried out to assess the concentrations of carbon monoxide (CO) and formaldehyde (HCHO) in Edo State, Southern Nigeria, using remote sensing data. A secondary data collection method was used for the assessment, and the levels of CO and HCHO were extracted annually from Google Earth Engine using information from Sentinel-5-P satellite data (COPERNISCUS/S5P/NRTI/L3_) and processed using ArcMap, Google Earth Engine, and Microsoft Excel to determine the levels of CO and HCHO in the study area from 2018 to 2023. The geometry of the study location is highlighted, saved and run, and a raster imagery file of the study area is generated after the task has been completed with a 'projection and extent' in the Geographic Tagged Image File Format (.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
Legume Rhizobium Sciences, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia.
Unlabelled: Rhizobia are soil bacteria capable of establishing symbiosis within legume root nodules, where they reduce atmospheric N into ammonia and supply it to the plant for growth. Australian soils often lack rhizobia compatible with introduced agricultural legumes, so inoculation with exotic strains has become a common practice for over 50 years. While extensive research has assessed the N-fixing capabilities of these inoculants, their genomics, taxonomy, and core and accessory gene phylogeny are poorly characterized.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy.
The aim of the present work is to study the atmospheric corrosion behavior of metals exposed to both urban (Milan, IT-Lombardia) and marine (Bonassola, IT-Liguria) atmospheres in Italy. A number of coupons (100 × 150 mm) of carbon steel (CS), hot-dip galvanized steel (GS) and different grades of stainless steel (SS) were exposed. At fixed periods of time, samples were characterized by means of Linear Polarization Resistance (LPR), mass loss tests and corrosion product analysis.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Department of Plant and Soil Sciences, University of Pretoria, Hatfield, 0001, Pretoria, South Africa.
In recent decades, natural rangelands have emerged as vital sources of livelihood and ecological services, particularly in Southern Africa, supporting communities in developing regions. However, the escalating global demand for food, driven by a growing human population, has led to the extensive expansion of cultivated areas, resulting in continuous nutrient leaching in rangelands. To ensure the long-term viability of these ecosystems, there is a need to develop effective approaches for managing and monitoring the seasonality of forage quality.
View Article and Find Full Text PDFPLoS One
January 2025
Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!