Bragg Scattering from a Random Potential.

Phys Rev Lett

Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.

Published: May 2022

A potential for propagation of a wave in two dimensions is constructed from a random superposition of plane waves around all propagation angles. Surprisingly, despite the lack of periodic structure, sharp Bragg diffraction of the wave is observed, analogous to a powder diffraction pattern. The scattering is partially resonant, so Fermi's golden rule does not apply. This phenomenon would be experimentally observable by sending an atomic beam into a chaotic cavity populated by a single mode laser.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.128.200402DOI Listing

Publication Analysis

Top Keywords

bragg scattering
4
scattering random
4
random potential
4
potential potential
4
potential propagation
4
propagation wave
4
wave dimensions
4
dimensions constructed
4
constructed random
4
random superposition
4

Similar Publications

The structural organisation of pentraxin-3 and its interactions with heavy chains of inter-α-inhibitor regulate crosslinking of the hyaluronan matrix.

Matrix Biol

January 2025

Manchester Cell-Matrix Centre, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PL, United Kingdom. Electronic address:

Pentraxin-3 (PTX3) is an octameric protein, comprised of eight identical protomers, that has diverse functions in reproductive biology, innate immunity and cancer. PTX3 interacts with the large polysaccharide hyaluronan (HA) to which heavy chains (HCs) of the inter-α-inhibitor (IαI) family of proteoglycans are covalently attached, playing a key role in the (non-covalent) crosslinking of HC•HA complexes. These interactions stabilise the cumulus matrix, essential for ovulation and fertilisation in mammals, and are also implicated in the formation of pathogenic matrices in the context of viral lung infections.

View Article and Find Full Text PDF

This study has successfully prepared three kinds of surface enhanced raman scattering (SERS) substrates, namely AgNP/CuNPs/Bragg-PSi (porous silicon, PSi), AgNPs/CuNPs/PSi and AuNPs/CuNPs/Bragg-PSi by use of an anode electrochemical etching method and a dip plating method. Results show that: the AgNPs/CuNPs/Bragg-PSi substrate has optimal SERS performance and is capable of detecting the Raman spectrum ( = 0.9315) of a 10 M-10 M crystal violet (CV) solution.

View Article and Find Full Text PDF

The use of neutron reflectors is an effective method for improving the quality of neutron sources and neutron delivery systems. In this work, we further develop the method based on the Bragg scattering of neutrons in crystals with large interplanar distances. We compare samples of differently prepared fluorine intercalated graphites by measuring the total cross section for the interaction of neutrons with the samples, depending on the neutron wavelength.

View Article and Find Full Text PDF
Article Synopsis
  • - The study compares the effectiveness of two types of X-ray analyzers: the spherically bent Bragg analyzer and the cylindrically bent Laue analyzer, focusing on their reflectivity and energy resolution using a SiO glass sample.
  • - Bragg analyzers perform well at photon energies up to 10 keV but experience a decline in reflectivity and resolution as energy increases, particularly beyond 20 keV.
  • - In contrast, Laue analyzers show improved reflectivity and steady resolution at energies over 10 keV, making them ideal for high-energy-resolution fluorescence-detection and X-ray emission spectroscopy of certain materials, with both analyzers demonstrating similar performance in specific measurements.
View Article and Find Full Text PDF
Article Synopsis
  • - The study presents a new processing strategy for synchrotron scanning 3D X-ray diffraction data to analyze complex materials like crystalline rocks, focusing on overcoming challenges of deformation and multiple phases in the samples.
  • - The method utilizes Friedel pairs to accurately pinpoint diffraction events and employs new modules to match data, assign phases to pixels or voxels, and locally fit crystal orientations.
  • - Tests on fractured granite and a metal gasket demonstrate the technique's ability to detail internal structures and textures, revealing valuable information about materials under high plastic deformation.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!