A theory of electronic friction is developed using the exact factorization of the electronic-nuclear wave function. No assumption is made regarding the electronic bath, which can be made of independent or interacting electrons, and the nuclei are treated quantally. The ensuing equation of motion for the nuclear wave function is a nonlinear Schrödinger equation including a friction term. The resulting friction kernel agrees with a previously derived mixed quantum-classical result by Dou et al., [Phys. Rev. Lett. 119, 046001 (2017)]PRLTAO0031-900710.1103/PhysRevLett.119.046001, except for a pseudomagnetic contribution in the latter that is here removed. More specifically, it is shown that the electron dynamics generally washes out the gauge fields appearing in the adiabatic dynamics. However, these are fully re-established in the typical situation where the electrons respond rapidly on the slow time scale of the nuclear dynamics (Markov limit). Hence, we predict Berry's phase effects to be observable also in the presence of electronic friction. Application to a model vibrational relaxation problem proves that the proposed approach represents a viable way to account for electronic friction in a fully quantum setting for the nuclear dynamics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.128.206002 | DOI Listing |
Acta Biomater
January 2025
Zhejiang Trusyou Medical Instruments Co., Ltd.,325000, China.
Titanium dioxide nanotube arrays (TNTs) generated in situ on the surface of dental implants have been shown to enhance bone integration for load-bearing support while managing load distribution and energy dissipation to prevent bone resorption from overload. However, their inadequate stability limits the clinical use of conventional TNTs. This study introduces an innovative approach to improve the mechanical stability of TNTs while maintaining their bone-integration efficiency.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Materials and Manufacturing Research Group, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK; Faculty of Engineering, Manipal University Jaipur, Rajasthan, 303007, India; Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India. Electronic address:
Effective management of agricultural and industrial by-products is essential for promoting circular economic practices and enhancing environmental sustainability. Agri-food wastes and waste cooking oil (WCO) represent two abundant residual streams with significant potential for sustainable biolubricant production. Valorizing biomass and WCO aligns with Sustainable Development Goal (SDG) 7, as it improves energy efficiency through enhanced lubricant performance and reduced energy loss.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408 China. Electronic address:
The exploration of pure organic ultra-long room temperature phosphorescence (RTP) materials has emerged as a research hotspot in recent years. Herein, a simple strategy for fabricating long-afterglow polymer aerogels with three-dimensional ordered structures and environmental monitoring capabilities is proposed. Based on the non-covalent interactions between pectin (PC) and melamine formaldehyde (MF), a composite aerogel (PCMF@phenanthrene) (PCMF@PA) doped with phosphorescent organic small molecules was constructed.
View Article and Find Full Text PDFSci Rep
January 2025
Department of CSE, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
The composition of the metal-polymer friction pair is carefully considered for interacting with water and hydrogen, ensuring the metals electrode process potential remains below waters in a neutral medium. Simultaneously, adherence to defined chemical composition ratios for the metal-polymer materials is crucial. This analysis is conducted under conditions of thermal stabilization, characterized by a minimal temperature gradient across the rim thickness within an equivalent thermal field.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China.
Solid-liquid lubrication systems have been widely used to enhance tribological behaviors. Alongside offering exceptional lubrication and wear-resistance performance, the active control of the tribological behavior of lubrication systems in accordance with service conditions is equally critical. To achieve this goal, accurately monitoring the condition of the lubrication system is fundamental.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!