AI Article Synopsis

Article Abstract

Childhood cancer survivors (CCSs) face lifelong side effects related to their treatment with chemotherapy. Anthracycline agents, such as doxorubicin (DOX), are important in the treatment of childhood cancers but are associated with cardiotoxicity. Cardiac toxicities represent a significant source of chronic disability that cancer survivors face; despite this, the chronic cardiotoxicity phenotype and how it relates to acute toxicity remains poorly defined. To address this critical knowledge gap, we studied the acute effect of DOX on murine cardiac nonmyocytes in vivo. Determination of the acute cellular effects of DOX on nonmyocytes, a cell pool with finite replicative capacity, provides a basis for understanding the pathogenesis of the chronic heart disease that CCSs face. To investigate the acute cellular effects of DOX, we present single-cell RNA sequencing (scRNAseq) data from homeostatic cardiac nonmyocytes and compare it with preexisting datasets, as well as a novel CyTOF datasets. SCANPY, a python-based single-cell analysis, was used to assess the heterogeneity of cells detected in scRNAseq and CyTOF. To further assist in CyTOF data annotation, joint analyses of scRNAseq and CyTOF data using an artificial neural network known as sparse autoencoder for clustering, imputation, and embedding (SAUCIE) are performed. Lastly, the panel is tested on a mouse model of acute DOX exposure at two time points (24 and 72 h) after the last dose of doxorubicin and examined with joint clustering. In sum, we report the first ever CyTOF study of cardiac nonmyocytes and characterize the effect of acute DOX exposure with scRNAseq and CyTOF. We describe the first mass cytometry studies of murine cardiac nonmyocytes. The mass cytometry panel is compared with single-cell RNA sequencing data. Homeostatic cardiac nonmyocytes are characterized by mass cytometry to identify and quantify four major cell populations: endothelial cells, fibroblasts, leukocytes, and pericytes. The single-cell acute nonmyocyte response to doxorubicin is studied at 24 and 72 h after doxorubicin exposure given daily for 5 days at a dose of 4 mg/kg/day.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9236860PMC
http://dx.doi.org/10.1152/ajpheart.00514.2021DOI Listing

Publication Analysis

Top Keywords

cardiac nonmyocytes
24
mass cytometry
16
murine cardiac
12
acute dox
12
scrnaseq cytof
12
cytometry panel
8
acute
8
doxorubicin exposure
8
cancer survivors
8
ccss face
8

Similar Publications

Decoding aging in the heart via single cell dual omics of non-cardiomyocytes.

iScience

December 2024

Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA.

To understand heart aging at the single-cell level, we employed single-cell dual omics (scRNA-seq and scATAC-seq) in profiling non-myocytes (non-CMs) from young, middle-aged, and elderly mice. Non-CMs, vital in heart development, physiology, and pathology, are understudied compared to cardiomyocytes. Our analysis revealed aging response heterogeneity and its dynamics over time.

View Article and Find Full Text PDF

Background: Vaping is touted as a safer alternative to traditional cigarette smoking, but the full spectrum of harm reduction versus comparable risk remains unresolved. Elevated bioavailability of nicotine in vape aerosol together with known risks of nicotine exposure may result in previously uncharacterized cardiovascular consequences of vaping. The objective of this study is to assess the impact of nicotine exposure via vape aerosol inhalation upon myocardial response to infarction injury.

View Article and Find Full Text PDF

Cardiovascular toxicity remains a major cause of drug attrition in early drug development, clinical trials, and post-market surveillance. In vitro assessment of cardiovascular liabilities often relies on single cell type-based model systems coupled with functional assays, like calcium flux and multielectrode arrays. Although these models offer high-throughput capabilities and demonstrate good predictivity for functional cardiotoxicities, they fail to consider the vital contribution of non-myocyte cells, thus limiting the potential for integrated risk assessment.

View Article and Find Full Text PDF

• hiPSC-CM offer an alternative to in vivo models for predicting cardiotoxicity. • hiPSC-CM monolayers detect pro-arrhythmic effects; inotropic detection is less established. • Cardiac spheroids and engineered tissue may suit chronic cardiotoxicity studies (>2 weeks).

View Article and Find Full Text PDF

A humanized monoclonal antibody targeting an ectonucleotidase rescues cardiac metabolism and heart function after myocardial infarction.

Cell Rep Med

November 2024

Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Cardiovascular Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA; Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA; California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA, USA. Electronic address:

Myocardial infarction (MI) results in aberrant cardiac metabolism, but no therapeutics have been designed to target cardiac metabolism to enhance heart repair. We engineer a humanized monoclonal antibody against the ectonucleotidase ENPP1 (hENPP1mAb) that targets metabolic crosstalk in the infarcted heart. In mice expressing human ENPP1, systemic administration of hENPP1mAb metabolically reprograms myocytes and non-myocytes and leads to a significant rescue of post-MI heart dysfunction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!