A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Self-Healable, Self-Repairable, and Recyclable Electrically Responsive Artificial Muscles. | LitMetric

Self-Healable, Self-Repairable, and Recyclable Electrically Responsive Artificial Muscles.

Adv Sci (Weinh)

Laboratory for Functional Polymers, Swiss Federal Laboratories for Materials Science and Technology Empa, Ueberlandstr. 129, Dübendorf, 8600, Switzerland.

Published: August 2022

Elastomers with high dielectric permittivity that self-heal after electric breakdown and mechanical damage are important in the emerging field of artificial muscles. Here, a one-step process toward self-healable, silicone-based elastomers with large and tunable permittivity is reported. Anionic ring-opening polymerization of cyanopropyl-substituted cyclic siloxanes yields elastomers with polar side chains. The equilibrated product is composed of networks, linear chains, and cyclic compounds. The ratio between the components varies with temperature and allows realizing materials with largely different properties. The silanolate end groups remain active, which is the key to self-healing. Elastomeric behavior is observed at room temperature, while viscous flow dominates at higher temperatures (typically 80 °C). The elasticity is essential for reversible actuation and the thermoreversible softening allows for self-healing and recycling. The dielectric permittivity can be increased to a maximum value of 18.1 by varying the polar group content. Single-layer actuators show 3.8% lateral actuation at 5.2 V µm and self-repair after a breakdown, while damaged ones can be recycled integrally. Stack actuators reach an actuation strain of 5.4 ± 0.2% at electric fields as low as 3.2 V µm and are therefore promising for applications as artificial muscles in soft robotics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9353453PMC
http://dx.doi.org/10.1002/advs.202202153DOI Listing

Publication Analysis

Top Keywords

artificial muscles
12
dielectric permittivity
8
self-healable self-repairable
4
self-repairable recyclable
4
recyclable electrically
4
electrically responsive
4
responsive artificial
4
muscles elastomers
4
elastomers high
4
high dielectric
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!