A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Machine Learning-Based Risk Model for Predicting Early Mortality After Surgery for Infective Endocarditis. | LitMetric

Background The early mortality after surgery for infective endocarditis is high. Although risk models help identify patients at high risk, most current scoring systems are inaccurate or inconvenient. The objective of this study was to construct an accurate and easy-to-use prediction model to identify patients at high risk of early mortality after surgery for infective endocarditis. Methods and Results A total of 476 consecutive patients with infective endocarditis who underwent surgery at 2 centers were included. The development cohort consisted of 276 patients. Eight variables were selected from 89 potential predictors as input of the XGBoost model to train the prediction model, including platelet count, serum albumin, current heart failure, urine occult blood ≥(++), diastolic dysfunction, multiple valve involvement, tricuspid valve involvement, and vegetation >10 mm. The completed prediction model was tested in 2 separate cohorts for internal and external validation. The internal test cohort consisted of 125 patients independent of the development cohort, and the external test cohort consisted of 75 patients from another center. In the internal test cohort, the area under the curve was 0.813 (95% CI, 0.670-0.933) and in the external test cohort the area under the curve was 0.812 (95% CI, 0.606-0.956). The area under the curve was significantly higher than that of other ensemble learning models, logistic regression model, and European System for Cardiac Operative Risk Evaluation II (all, <0.01). This model was used to develop an online, open-access calculator (http://42.240.140.58:1808/). Conclusions We constructed and validated an accurate and robust machine learning-based risk model to predict early mortality after surgery for infective endocarditis, which may help clinical decision-making and improve outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9238722PMC
http://dx.doi.org/10.1161/JAHA.122.025433DOI Listing

Publication Analysis

Top Keywords

infective endocarditis
16
test cohort
16
early mortality
12
mortality surgery
12
surgery infective
12
high risk
12
prediction model
12
cohort consisted
12
area curve
12
identify patients
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!