L.-Diabetes-Related Bioactivities, Quality Control, and Safety Considerations.

Front Pharmacol

Department of Pharmaceutical Biology, Institute of Pharmacy, Kiel University, Kiel, Germany.

Published: May 2022

L. (Cucurbitaceae), commonly known as bitter gourd or bitter melon, is widely cultivated in many tropical and subtropical regions of the world, where its unripe fruits are eaten as a vegetable. Apart from its culinary use, has a long history in traditional medicine, serving as stomachic, laxative or anthelmintic, and, most notably, for the treatment of diabetes and its complications. Its antidiabetic properties and its beneficial effects on blood glucose and lipid concentrations have been reported in numerous and studies, but the compounds responsible for the observed effects have not yet been adequately described. Early reports were made for charantin, a mixture of two sterol glucosides, and the polypeptide p-insulin, but their low concentrations in the fruits or their limited bioavailability cannot explain the observed therapeutic effects. Still, for many decades the search for more reasonable active principles was omitted. However, in the last years, research more and more focused on the particular cucurbitane-type triterpenoids abundant in the fruits and other parts of the plant. This mini review deals with compounds isolated from the bitter gourd and discusses their bioactivities in conjunction with eventual antidiabetic or adverse effects. Furthermore, methods for the quality control of bitter gourd fruits and preparations will be evaluated for their meaningfulness and their potential use in the standardization of commercial preparations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9152207PMC
http://dx.doi.org/10.3389/fphar.2022.904643DOI Listing

Publication Analysis

Top Keywords

bitter gourd
12
quality control
8
l-diabetes-related bioactivities
4
bioactivities quality
4
control safety
4
safety considerations
4
considerations cucurbitaceae
4
cucurbitaceae commonly
4
bitter
4
commonly bitter
4

Similar Publications

Enhancement of health beneficial bioactivities of bitter melon (Momordica charantia L.) by puffing.

Food Chem

January 2025

Department of Food Science and Biotechnology, Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea. Electronic address:

Effects of puffing and extraction method on physical and biological efficacy of bitter melon was investigated. Puffing increased the Maillard reaction products, extraction yield, total phenolic and total flavonoid contents. Antioxidant activity was the highest at 980 kPa, but there was no significant difference between two extraction methods.

View Article and Find Full Text PDF

The objective of this study was the develop of fortified cookies enriched with oats flour and bitter gourd powder and monitoring the effects of these enrichments on the physicochemical, antioxidant, antimicrobial, and sensory attributes. This study was subjected to four treatments: control (0% oats flour and bitter gourd powder), T1 (10% oats flour), T2 (3% bitter gourd powder), and T3 (7% oats flour and 3% bitter gourd powder). Various physical properties of the cookies, including weight, thickness, diameter, spread ratio, baking loss, pH, and color values (L*, a*, and b*), were measured.

View Article and Find Full Text PDF

Background: Lipoxygenases (LOXs) are key enzymes in the unsaturated fatty acid oxidation reaction pathway and play an important regulatory role in the synthesis of fruit aroma volatiles.

Methods: gene family members were identified in the whole genome database of bitter gourd and analyzed bioinformatically. An RT-qPCR was used to analyze the expression differences in different tissues.

View Article and Find Full Text PDF

Background Chronic periodontitis is primarily caused by various bacterial species present in the plaque biofilm, which trigger a host inflammatory response. This leads to the abnormal release of inflammatory mediators such as proinflammatory cytokines (interleukin-1, interleukin-6, interleukin-8, and tumor necrosis factor-α), which are free radicals that cause alveolar bone resorption and tooth loss. ​​​ (bitter gourd) is a widely used medicinal plant for the treatment of numerous diseases such as skin infections, diabetes, metabolic disorders, and carcinomas for several decades.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how 4% microalgae (MC) and fermented microalgae (FMC) affect gut bacteria and obesity in male mice, with implications for animal metabolic health.
  • Mice were divided into four diets over 12 weeks, and gut microbiome analysis showed significant changes in microbial communities for those on MC and FMC diets.
  • Results indicated that both MC and FMC could help manage metabolism-related disorders and obesity by altering gut microbiota and enhancing metabolic pathways.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!