is one of the most commonly used medicinal plants as it exhibits several pharmacological activities such as antioxidant, antibacterial, anticancer, antidiabetic, and hemolytic. The purpose of this study was to apply the nanotechnology approach for exploring the enhanced bioactivities of freshly prepared L. nanosuspensions and the phytochemical profile of seed ethanolic extract. In this study, we performed the biochemical characterization of L. ethanolic extract through High-performance liquid chromatography (HPLC), Fourier-transform infrared spectroscopy (FT-IR), and Gas chromatography (GC), and bioactivities in terms of antioxidant, antidiabetic, antibacterial, and hemolytic activities of nanosuspension and extract were competitively studied. The results revealed that the nanosuspension of seeds showed higher total phenolic (478.63 ± 5.00 mg GAE/100 g) and total flavonoid contents (192.23 ± 1.390 mg CE/100 g) than the ethanolic seed extract. The antioxidant activity was performed using the DPPH scavenging assay, and nanosuspension showed higher potential (16.74 ± 1.88%) than the extract. The antidiabetic activity was performed using antiglycation and α-amylase inhibition assays, nanosuspension showed higher antidiabetic potential [antiglycation (58 ± 0.912%)] and [bacterial α-amylase inhibition (18.0 ± 1.3675%)], respectively. Nanosuspension showed higher biofilm inhibition activity against (66.44 ± 3.529%) than the extract (44.96 ± 2.238%) and ciprofloxacin (59.39 ± 3.013%). Hemolytic activity was performed and nanosuspension showed higher hemolytic activity than the extract as 7.8 ± 0.1% and 6.5 ± 0.3%, respectively. The study showed that nanosuspension had enhanced the bioavailability of bioactive plant compounds as compared to the ethanolic extract. Therefore, nanosuspension of seed extract showed higher biochemical activities as compared to the ethanolic extract. This nanotechnology approach can be used as a platform for the development of combination protocols for the characterization of liquid state nanosuspensions in an adequate manner and also for therapeutic applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9152536PMC
http://dx.doi.org/10.3389/fbioe.2022.888177DOI Listing

Publication Analysis

Top Keywords

ethanolic extract
16
nanosuspension higher
16
nanotechnology approach
12
activity performed
12
extract
10
approach exploring
8
exploring enhanced
8
enhanced bioactivities
8
biochemical characterization
8
freshly prepared
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!