Background: This study aimed to investigate the effects of hypoxia and normoxia preconditioning in rabbit intervertebral disc-derived stem cells (IVDSCs) and discus-derived conditioned medium (DD-CM)/secretomes in vitro. Transforming growth factor (TGF)-β1, platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), and vascular endothelial growth factor (VEGF) have a role in the proliferation, development, differentiation, and migration of MSCs.

Materials And Methods: Intervertebral discs were isolated from rabbit and incubated in normoxia and hypoxia 1%, 3%, and 5% (hypoxia groups) condition. Cell counting was performed after 24 hours of manipulation, then analyzed using one-way ANOVA. TGF-β1, PDGF, FGF, and VEGF were measured using the ELISA.

Results: The highest number of cells was in the hypoxia 3% preconditioning compared to the normoxia, hypoxia 1%, and hypoxia 5% groups. Hypoxia 3% also had the highest increase in PDGF protein production compared to normoxia, with hypoxia 1% and 5%. Among hypoxia groups, the highest secretions of VEGF and FGF proteins were in the hypoxia 3% group. Based on TGF-β1 protein measurement, the hypoxia 1% group was the highest increase in this protein compared to other groups.

Conclusion: Oxygen level in hypoxia preconditioning has a role in the preparation of IVDSCs and secretome preparation in vitro. The highest cell numbers were found in the treatment group with 3% hypoxia, and 3% hypoxia was significantly related to support IVDSCs preparation. Preconditioning with 3% hypoxia had higher PDGF and VEGF levels than other hypoxia groups.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9153942PMC
http://dx.doi.org/10.2147/SCCAA.S363951DOI Listing

Publication Analysis

Top Keywords

hypoxia
17
growth factor
16
hypoxia hypoxia
16
hypoxia groups
16
normoxia hypoxia
12
intervertebral disc-derived
8
disc-derived stem
8
stem cells
8
hypoxia preconditioning
8
compared normoxia
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!