Background: Routine clinical factors play an important role in the clinical diagnosis of focal liver lesions (FLLs); however, they are rarely used in computer-assisted diagnosis. Therefore, we developed a deep learning (DL) radiomics model, and investigated its effectiveness in diagnosing FLLs using long-range contrast-enhanced ultrasound (CEUS) cines and clinical factors.

Methods: Herein, 303 patients with pathologically confirmed FLLs after surgery at three hospitals were retrospectively enrolled and divided into a training cohort (n=203), internal validation (IV) cohort (n=50) from one hospital with the ratio of 4:1, and external validation (EV) cohort (n=50) from the other two hospitals. Four DL radiomics models, namely Four Stream 3D convolutional neural network (FS3D) (trained with CEUS cines only), FS3D (trained with CEUS cines and alpha fetoprotein), FS3D (trained with CEUS cines and hepatitis), and FS3D (trained with CEUS cines, alpha fetoprotein, and hepatitis), were formed based on 3D convolutional neural networks (CNNs). They used approximately 20-s preoperative CEUS cines and/or clinical factors to extract spatiotemporal features for the classification of FLLs and the location of the region of interest. The area under curve of the receiver operating characteristic and diagnosis speed were calculated to evaluate the models in the IV and EV cohorts, and they were compared with those of two radiologists. Two-sided Delong tests were used to calculate the statistical differences between the models and radiologists.

Results: FS3D, which incorporated CEUS cines, hepatitis, and alpha fetoprotein, achieved the highest area under curve of 0.969 (95% CI: 0.901-1.000) and 0.957 (95% CI: 0.894-1.000) among radiologists and other models in IV and EV cohorts, respectively. A significant difference was observed when comparing FS3D and radiologist 2 (all P<0.05). The diagnosis speed of all the models was the same (10.76 s per patient), and it was two times faster than those of the radiologists (radiologist 1: 23.74 and 27.75 s; radiologist 2: 25.95 and 29.50 s in IV and EV cohorts, respectively).

Conclusions: The proposed DL radiomics demonstrated excellent performance on the benign and malignant diagnosis of FLLs by combining CEUS cines and clinical factors. It could help the individualized characterization of FLLs, and enhance the accuracy of diagnosis in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9131334PMC
http://dx.doi.org/10.21037/qims-21-1004DOI Listing

Publication Analysis

Top Keywords

ceus cines
28
fs3d trained
16
trained ceus
16
clinical factors
12
alpha fetoprotein
12
deep learning
8
learning radiomics
8
focal liver
8
liver lesions
8
long-range contrast-enhanced
8

Similar Publications

Background: Based on the conventional ultrasound images of thyroid nodules, contrast-enhanced ultrasound (CEUS) videos were analyzed to investigate whether CEUS improves the classification accuracy of benign and malignant thyroid nodules using machine learning (ML) radiomics and compared with radiologists.

Materials And Methods: The B-mode ultrasound (B-US), real-time elastography (RTE), color doppler flow images (CDFI) and CEUS cines of patients from two centers were retrospectively gathered. Then, the region of interest (ROI) was delineated to extract the radiomics features.

View Article and Find Full Text PDF

Contrast-enhanced ultrasound (CEUS) acquisitions of focal liver lesions are affected by motion, which has an impact on contrast signal quantification. We therefore developed and tested, in a large patient cohort, a motion compensation algorithm called the Iterative Local Search Algorithm (ILSA), which can correct for both periodic and non-periodic in-plane motion and can reject frames with out-of-plane motion. CEUS cines of 183 focal liver lesions in 155 patients from three hospitals were used to develop and test ILSA.

View Article and Find Full Text PDF

Background: Routine clinical factors play an important role in the clinical diagnosis of focal liver lesions (FLLs); however, they are rarely used in computer-assisted diagnosis. Therefore, we developed a deep learning (DL) radiomics model, and investigated its effectiveness in diagnosing FLLs using long-range contrast-enhanced ultrasound (CEUS) cines and clinical factors.

Methods: Herein, 303 patients with pathologically confirmed FLLs after surgery at three hospitals were retrospectively enrolled and divided into a training cohort (n=203), internal validation (IV) cohort (n=50) from one hospital with the ratio of 4:1, and external validation (EV) cohort (n=50) from the other two hospitals.

View Article and Find Full Text PDF

Objectives: We aimed to establish and validate an artificial intelligence-based radiomics strategy for predicting personalized responses of hepatocellular carcinoma (HCC) to first transarterial chemoembolization (TACE) session by quantitatively analyzing contrast-enhanced ultrasound (CEUS) cines.

Methods: One hundred and thirty HCC patients (89 for training, 41 for validation), who received ultrasound examination (CEUS and B-mode) within 1 week before the first TACE session, were retrospectively enrolled. Ultrasonographic data was used for building and validating deep learning radiomics-based CEUS model (R-DLCEUS), machine learning radiomics-based time-intensity curve of CEUS model (R-TIC), and machine learning radiomics-based B-Mode images model (R-BMode), respectively, to predict responses (objective-response and non-response) to TACE with reference to modified response evaluation criteria in solid tumor.

View Article and Find Full Text PDF

Background: Speckle noise is an inherent characteristic of dynamic contrast-enhanced ultrasound (DCEUS) movies and ultrasound images in general. Speckle noise considerably reduces the quality of these images and limits their clinical use. Currently, temporal compounding and maximum intensity persistence (MIP) are among the most widely accepted processing methods enabling the visualization of vasculature using DCEUS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!